Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разложение в ряд Маклорена некоторых элементарных функций




1. y=ex

Находим производные различных порядков:

x= 0

По (15.11) получаем

(15.2.5)

Радиус сходимости этого ряда , т.е. ряд (15.2.5) сходится к функции ex на всей числовой оси.

2. , где m – любое рациональное число

……………………………… ………………………

……………………………………………………………………………

На основании (15.10) получаем ряд Маклорена для функции

(15.2.6

Ряд (15.2.6) называется биномиальным рядом. Его радиус сходимости

,

т.е. ряд сходится в интервале (-1,1).

Замечание: если m – целое, положительное число, то биномиальный ряд представляет собой многочлен степени m, так как при m-n +1=0. n -ый член ряда (15.2.6) и все остальные члены равны нулю. Этот многочлен называется биномом Ньютона.

3. .

Представим

Подынтегральную функцию будем рассматривать как геометрический ряд с первым членом, равным единице, и знаменателем , который сходится, если , т.е. в интервале (-1,1). Это означает, что

(15.2.7)

Интегрируя почленно ряд (15.2.7), получаем разложение в ряд функции

, (15.2.8)

который сходится внутри интервала (-1,1). Сходимость на концах интервала требует дополнительного исследования.

Используя ряды (15.2.5) – (15.2.8), можно достаточно просто находить разложения в ряд более сложных функций, не прибегая к их многократному дифференцированию, что может быть достаточно сложно.

Примеры. Разложить в ряд функции

1. . Воспользуемся разложением (15.2.7)

2. . Воспользуемся биномиальным рядом, полагая , подставив вместо

,

3. . Воспользуемся рядом (15.2.4)

Во всех случаях следует дополнительно исследовать сходимость рядов на концах интервала сходимости.

Используя ряды (15.2.5) – (15.2.8) и приведенные примеры, можно достаточно просто получать разложения в ряд функций , , , и т.п.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 502; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.