Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

NO + O2 ® NO2 + O

O + O3 ® 2 O2

 

Разрушение озона может также проходить при попадании в атмосферу хлорфторуглеводороды (фреонов), широко используемых в технике и быту.

 

Методы очистки промышленных газовых выбросов от пыли.

Аэрозоли воздушных выбросов промышленных предприятий характеризуются большим разнообразием дисперсного состава и других физико-химических свойств. В связи с этим разработаны различные методы очистки и типы пылеуловителей - аппаратов, предназначенных для очистки выбросов от пыли (и других аэрозолей).

Методы очистки промышленных газовых выбросов от пыли можно разделить на две группы: методы улавливания пыли «сухим» способом и методы улавливания пыли «мокрым» способом. Аппараты обеспыливания газов включают: пылеосадительные камеры, циклоны, пористые фильтры, электрофильтры, скрубберы и др.

Сухие механические обеспыливающие аппараты. К таким аппаратам относятся пылеосадительные камеры, циклоны, пористые фильтры. Применение того или иного аппарата обуславливается свойствами и группой дисперсности пыли:

I - очень крупнодисперсная пыль, d50 > 140 мкм,

II- крупнодисперсная пыль, d50 = 40 - 140 мкм,

III- среднедисперсная пыль, d50 = 10 - 40 мкм,

IU- мелкодисперсная пыль, d50 = 1 - 10 мкм,

U- очень мелкодисперсная пыль, d50 < 1 мкм.

d50 - среднее значение эффективного диаметра 50 частиц пыли.

Пылеосадительные камеры и циклоны большой пропускной способности применяют для улавливания пыли первой и второй групп (крупнодисперсной), тканевые фильтры - для улавливания пыли третьей и четвертой групп (средне- и мелкодисперсной), электрофильтры эффективны для улавливания пыли пятой группы (очень мелкодисперсной).

Пылеосадительные камеры. Аппарат этого типа представляет собой пустотелый или с горизонтальными полками во внутренней полости короб, в нижней части которого имеется бункер для сбора пыли (рис.2). Поток запыленного газа вводится в камеру через отверстие сравнительно небольшого диаметра, но при этом газ должен полность заполнять поперечное сечение камеры. Для соблюдения этого условия в конструкции камеры предусматриваются специальные устройства (полки, перегородки). Загрязненный пылью газ (1) пропускается через камеру со скоростью 0,2 – 1,5 м/с, частицы пыли оседают под действием силы тяжести в нижней части аппарата. Степень очистки газа в камерах не превышает 40 – 50%.

 
 

 

 


Рис.2. Пылеосадительная камера

 

Обеспыленный газ (2) выводится из камеры и далее либо выбрасывается в атмосферу, либо подается в другие аппараты для более глубокой очистки.

Циклоны различных типов получили широкое применение для сухой очистки газов. Это механические обеспыливающие устройства, в которых очистка газа основана на использовании инерционных свойств частиц пыли. Циклоны являются наиболее характерными представителями сухих инерционных пылеуловителей. Они, как правило, имеют простую конструкцию, обладают большой пропускной способностью и несложны в эксплуатации. Общая схема одной из конструкций циклона представлена на рис.3. Запыленный воздух вводится тангенциально в верхнюю часть циклона. Здесь формируется вращающийся поток, который затем опускается по кольцевому пространству, образованному цилиндрической частью циклона и выхлопной трубой. Продолжая вращаться, воздушный поток выходит из циклона через выхлопную трубу. Отделение загрязнений происходит следующим образом. При входе в циклон частицы дисперсной фазы по инерции движутся прямолинейно. Затем центробежные силы искривляют траекторию их движения. Те из частиц, масса которых достаточно велика, достигают стенок циклона, под действием силы тяжести опускаются в нижнюю часть аппарата, далее через пылевыпускное отверстие проходят в бункер, где и оседают.

 
 

 


Рис.3. Циклон

 

Для очистки больших объемов воздуха циклоны могут компоноваться в группы, объединенные общим пылесборником и коллектором очищенного воздуха.

Фильтры с пористыми перегородками различных типов широко используют для очистки загрязненных газовых выбросов. Процесс фильтрования состоит в пропускании аэродисперсной системы (газа, загрязненного пылью или частицами аэрозолей) через пористый материал фильтра. Частицы дисперсной фазы, размеры которых превышают диаметр пор фильтровального материала, отделяются от газового потока. В промышленности используются фильтры различных конструкций с различными фильтрующими элементами. По типу фильтрующей перегородки фильтры бывают:

1) с зернистыми неподвижными слоями, состоящими из свободно насыпанных зернистых материалов;

2) с зернистыми псевдоожиженными слоями;

3) с гибкими пористыми перегородками из ткани, войлока, полимерных материалов, губчатой резины и т.п.;

4) с полужесткими пористыми перегородками из вязаной и тканой сетки, стружки;

5) с жесткими пористыми перегородками из пористой керамики, пористых металлов и других подобных материалов.

Фильтрующие зернистые слои используют для очистки газов от крупнодисперсных частиц загрязнений. Для очистки газов от пылей механического происхождения (от дробилок, сушилок, мельниц) часто используют фильтры из гравия.

Для тонкой очистки газов от аэрозолей и мелкодисперсной пыли применяют войлоки из синтетических волокон (лавсана, ПВХ, капрона). Хорошими фильтрующими свойствами обладают хлопчатобумажные и шерстяные ткани, но они менее прочны и химически стойки, чем синтетические. Проволочные сетки, изготовленные из специальных марок сталей, меди, латуни, бронзы, никеля могут работать в широком интервале температур (0ОС – 800ОС), в химически агрессивных средах. Фильтрующие элементы из пористой керамики, пористых металлов обладают высокой прочностью, коррозионной и термостойкостью.

 
 

 

 


Рис.4. Схема фильтра с пористым фильтрующим элементом.

 

Конструкционное оформление газовых фильтров может быть различным. Наибольшее распространение получили рукавные фильтры. Поток загрязненного газа проходит через фильтрующие тканевые рукава, пыль задерживается на внутренней поверхности рукавов. Отделение пыли и регенерация фильтров может проводиться одним из следующих методов: механическим встряхиванием, обратной продувкой воздухом, импульсной продувкой сжатым воздухом. Главным достоинством рукавных фильтров является высокая эффективность очистки для всех размеров частиц.

Электрофильтры. В основе работы электрофильтра лежит явление электризации взвешенных в газе частиц дисперсной фазы с последующим осаждением их на электроде с зарядом, противоположным по знаку заряду частиц загрязнений (осадительном электроде). По конструкции электрофильтры подразделяют на трубчатые и пластинчатые. В трубчатых электрофильтрах загрязненный газ пропускается по вертикальным трубам диаметром 20 – 25 см, по центру которых натянута проволока. Скорость движения газа в трубке составляет 0,5 - 2 м/с. Газ находится в трубке 6 – 8 с. Постоянный ток напряжением 50 – 100 кВ подается на электроды. Электродами являются стенки трубки (осадительный электрод) и проволока (каронирующий электрод).

 
 

 

 


Рис.5. Схема элемента трубчатого электрофильтра.

В пластинчатых электрофильтрах осадительными электродами являются пластинки, между которыми натянута проволока – коронирующий электрод. Для увеличения степени очистки электроды могут смачивать водой. В таком случае электрофильтр будет относиться к мокрым.

Процесс очистки газа от частиц пыли происходит следующим образом. Молекулы газов воздуха, проходящего в пространстве между двумя электродами (рис.5), при определенной напряженности электрического поля между электродами ионизируются. Образующиеся ионы движутся к соответствующему электроду (стенке трубки), сталкиваются при движении с частицами пыли (или жидкими частицами аэрозоля), передают им свой заряд – ионизируют частицы. Далее заряженные частицы пыли движутся к электроду с противоположным по знаку зарядом (к стенке трубки), осаждаются на поверхности этого электрода. Очищенный газ выводится из трубки. Накапливающийся на поверхности осадительного электрода слой пыли периодически удаляют сухим (вибрация) или мокрым (отмывка) способом. Пыль собирается в бункера в виде сухого порошка или в виде пульпы (взвеси) в нижней части аппарата. Электрофильтры применяют для тонкой очистки газов от частиц аэрозолей. Выбор той или иной конструкции электрофильтра определяется условиями работы: составом и свойствами очищаемых газов, требуемой эффективностью очистки.

Мокрые пылеулавливающие аппараты работают по принципу улавливания частиц пыли поверхностью или объемом жидкости (воды). Эти аппараты характеризуются высокой степенью очистки от мелкодисперсной пыли. С их помощью можно очищать от пыли горячие и взрывоопасные газы. Эффективность работы аппаратов мокрой очистки зависит от смачиваемости пыли, площади соприкосновения запыленного потока газа с поверхность жидкости. Если пыль плохо смачивается водой, то в воду добавляют поверхностно активные вещества (ПАВ). Для увеличения поверхности контакта в аппараты мокрой очистки вводят специальные насадки из материалов инертных по отношению к воде и загрязнениям (в промывных башнях) или воду распыляют при помощи форсунок (форсуночные скрубберы). На рис.6 приведены схемы двух аппаратов мокрой очистки – промывной башни (А) и форсуночного скруббера (Б). Промывная башня является простейшим аппаратом мокрой очистки газов от пыли. Она представляет собой колонну, заполненную кольцами Рашига или каким-либо другим инертным материалом.

 
 

 

 


Рис.6. Схема аппаратов мокрой очистки газов.

 

Промывную воду и запыленный газовый поток подаются в колонну противотоком. По мере продвижения газового потока снизу вверх колонны пыль захватывается водной поверхностью, вода загрязняется твердыми частицами, растворимыми веществами и в виде шлама выводится из нижней части колонны.

В форсуночных скрубберах запыленный газовый поток подается через патрубок в нижней части скруббера и направляется на зеркало воды, где отделяются наиболее крупные частицы пыли. Далее газовый поток, содержащий мелкодисперсную пыль, распределяется по всему сечению аппарата, поднимается вверх навстречу потоку капель воды, подаваемых через форсуночные пояса. По мере продвижения газового потока снизу вверх аппарата пыль захватывается каплями воды, опускается в нижнюю часть аппарата и выводится в виде шлама.

К недостаткам мокрых пылеулавливающих аппаратов относятся: образование шлама, требующего дополнительных специальных систем для его переработки; вынос в атмосферу водяных паров; повышенная коррозия аппаратов и газоходов; ухудшение условий рассеивания загрязнений через заводские трубы.

 

 

Методы очистки промышленных газовых выбросов

от газообразных и парообразных загрязнений.

Промышленные газовые выбросы могут содержать токсичные для биоты неорганические и органические вещества. Среди них наиболее опасны для биоты оксиды серы, азота, углерода (СО), аммиак, хлористый водород, фтористый водород, хлор, пары летучих органических соединений: ацетона, бензола, толуола, ксилола, фенола, метилэтилкетона, низших спиртов, гептана, сероуглерода, эфиров, галогенуглеводородов (фтор- и хлорпроизводных), бензина. Общим для всех загрязнений данной группы является то, что при обычных атмосферных условиях (давление, температура) эти вещества находятся в газообразном состоянии в потоке очищаемого газа. Эти загрязнения отличаются по растворимости в воде и другим физико-химическим и химическим свойствам, что используется при выборе метода очистки.

В зависимости от типа процесса, методы очистки промышленных газовых выбросов от газообразных загрязнений и паров подразделяются на пять основных групп (таблица 2), каждой из которых соответствуют определенные аппараты:

 

Таблица 2

Методы очистки промышленных газовых выбросов

от газообразных и парообразных загрязнений

 

Методы очистки тип процесса аппараты
абсорбционные поглощение загрязнений растворителем (водой) с образованием раствора насадочные башни; скрубберы; барботажно-пенные аппараты и др.
хемосорбционные химическое взаимодействие загрязнений с жидкими сорбентами (поглотителями) с образованием малолетучих или малорастворимых химических соединений насадочные башни; скрубберы; распылительные аппараты и др.
адсорбционные адсорбция загрязнений на поверхности твердого вещества адсорберы
термические   окисление загрязнений кислородом воздуха при высоких температурах с образованием нетоксичных (менее токсичных) соединений камеры сжигания и др.
каталитические каталитическая химическая реакция загрязнений с другими загрязнениями или добавленными веществами с образованием нетоксичных (менее токсичных) соединений каталитические и термокаталитические реакторы
биохимические трансформация загрязнений под воздействием ферментов, вырабатываемых микроорганизмами биофильтры; биоскрубберы

 

 

Абсорбционные методы основаны на различиях в растворимости веществ в определенных растворителях. При контакте загрязненного газового потока с жидким растворителем пары определенных загрязненийпоглощаются растворителем – абсорбентом с образованием раствора. Наиболее дешевым и доступным в промышленных условиях растворителем является вода. Процесс поглощения таких загрязнений растворителем (водой) проводится одним из следующих способов. Загрязненный газовый поток: а) пропускается через насадочную колонну, орошаемую растворителем (водой); б) контактирует с каплями жидкости, распыляемой форсунками; в) барботируется через слой жидкости. Чистый растворитель вводится в верхнюю часть аппаратов абсорбционной очистки, а из нижней части аппаратов отбирают отработанный раствор. Очищенный газ из верхней части аппаратов выводится в атмосферу. Полученный раствор подвергают обычно регенерации, т.е. очищают от загрязнений и снова возвращают в аппарат. Концентрат загрязняющих веществ используют в качестве ВМР – вторичного материального ресурса или отхода. Таким образом, в атмосферу загрязнения не поступают, но могут загрязнять почву в виде твердых отходов или поступать в водоемы в составе сточной воды, если не применяются в производственном процессе малоотходные или безотходные технологии.

<== предыдущая лекция | следующая лекция ==>
 | Объекты и цели государственного регулирования экономики
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1265; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.