Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биноминальные коэффициенты




Лекция 11

Тема: Полиномиальная формула. Треугольник Паскаля. Рекуррентные соотношения.

План:

1. Треугольник Паскаля

2. Бином Ньютона

3. Свойства биномиальных коэффициентов

4. Рекуррентные соотношения.

5. Основные способы решения рекуррентных соотношений

 

Сnk (число сочетаний) - это число способов выбрать k различных (т.е. без повторений) предметов из n различных (0<= k <= n), без учета порядка выбора. Они могут быть вычислены по следующим формулам:

 

Треугольник Паскаля и Бином Ньютона:

 

В предыдущих примерах мы вычисляли числа Cnk непосредственно по формуле, делая много умножений и делений. Оказывается, есть метод вычислять сразу много разных Cnk, используя только сложение. Особенно важно это при программной реализации, поскольку компьютер складывает числа гораздо быстрее, чем умножает и тем более делит. Он основан на доказанном выше свойстве:

Cn+1k+1=Cnk+Cnk+1.

Давайте построим из чисел два бесконечных треугольника. В первом из них (см. рис. внизу слева) будем ставить единицы в самом верху и по краям каждом следующей строки, а каждое из остальных чисел будет равно сумме двух стоящих над ним слева и справа (этот треугольник называется треугольником Паскаля). Во втором (см. рис. внизу справа) будем последовательно выписывать значения Cnk, отводя по одной строке для каждого значения n и располагая в ней Cnk по возрастанию k. На самом деле эти треугольники одинаковы. Равенство первых нескольких строчек, можно заметить, а дальше надо уже доказывать.

                 
                 
                 
                 
                 

 

        C00        
      C10   C11      
    C20   C21   C22    
  C30   C31   C32   C33  
C40   C41   C42   C43   C44

 

Утверждение. Если строчки треугольника Паскаля и позиции в них нумеровать, начиная с нуля, то на k-м месте в n-й строке будет стоять значение Cnk (основное свойство треугольника Паскаля).

Доказательство: Индукция по n (см. лекцию "Индукция", если вы еще не знакомы с этим методом).

База: n =0 - действительно, C00 =1 - как раз то, что стоит на верхушке треугольника Паскаля.

Переход: от n к n+1. Пусть в n-й строчке все числа уже равны значениям Cnk из n по соответствующим k. Рассмотрим n+1 -ю строчку. На ее краях (нулевое и n+1 -е места) стоят две единицы - и значения Cn+10 и Cn+1n+1 как раз равны 1. Далее, при всех k от 1 до n число, стоящее на k -м месте в n+1-й строке, равно сумме чисел, стоящих в n-й строке на k-1 -м и k -м местах соответственно (т.е. как раз двух стоящих над ним - по принципу построения треугольника Паскаля). По предположению индукции, они равны Cnk-1 и Cnk, а их сумма тогда будет Cnk-1+Cnk, что как раз равно Cn+1k, ч.т.д.

Для справки мы приводим здесь первые 11 строчек (с нулевой по 10-ю) треугольника Паскаля - их можно посчитать и вручную. На компьютере, с помощью простой программы, можно вычислить значительно больше, и более быстрого алгоритма, чем треугольник Паскаля, пока не существует.

                                         
                                         
                                         
                                         
                                         
                                         
                                         
                                         
                                         
                                         
                                         

 

Такие, казалось бы, чисто комбинаторные вещи, как числа Cnk и треугольник Паскаля, неожиданно встречаются и в алгебре. Выпишем известные формулы сокращенного умножения:

(a+b)0= (a+b)1= (a+b)2= (a+b)3= 1 a+b a2+2ab+b2 a3+3a2b+3ab2+b3

Коэффициенты в этих формулах (и это лучше видно, когда выписаны еще нулевая и первая степень) - это числа из треугольника Паскаля, то есть Cnk. На самом деле, такая закономерность будет продолжаться и дальше, и называется она бином Ньютона. Точнее:

 

(a+b)n=an+Cn1an-1b+Cn2an-2b2+...+Cnn-1a1bn-1+bn.

 

Можно доказать эту формулу по индукции, как и основное свойство треугольника Паскаля. Приведем более простое объяснение:

 

(a+b)n=(a+b)(a+b)...(a+b) (n скобок). Раскрывая скобки, получаем в отдельных слагаемых произведения n букв, каждая из которых - a или b, т.е. an-kbk при каком-то k от 0 до n. Докажем, что для каждого такого k число таких слагаемых - ровно Cnk, откуда, приведя подобные, и получаем формулу бинома. Но это правда: an-kbk получается путем взятия a из k скобок и b из n-k оставшихся; разные такие слагаемые получаются путем разного выбора этих самых k скобок, а k скобок из n можно выбрать как раз Cnk способами, ч.т.д.

Именно из-за бинома Ньютона числа Cnk часто называют биномиальными коэффициентами.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 939; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.