Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аварии на биологически опасных объектах




Теплоснабжение

Прорыв любой теплотрассы – большая беда. Необходимо котельные строить так, чтобы возможность работать на нескольких видах топлива. Переход с одного вида топлива на другой – должен занимать минимальное время.

Биологически опасный объект – это объект (организация), на котором хранят, изучают, используют, транспортируют опасные биологические вещества, при аварии на котором или при рушении которого может произойти гибель или биологическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды.

Степень опасности многих возбудителей инфекционных заболеваний по масштабам заражения и действию на людей достаточно велика.

Как известно, большинство инфекционных заболеваний начинается при попадании в организм несколько тысяч микробных тел, а для некоторых например, для туляремии заболевание может возникнуть и от одиночной микробной клетки. При этом смертность среди заболевших туляремией, по различным источникам, колеблется от 5 до 30 %. В то же время, в одной унции-28,3 граммах жидкой туляремийной культуры содержаться до триллиона микроорганизмов. Отсюда можно сделать вывод о степени опасности объектов, в производственной деятельности, которых применяются биологически опасные вещества.

Возможность угрозы распространения возбудителей опасных инфекционных заболеваний может быть лишь при биологических авариях на биологически опасных объектах.

1.2. Характеристика классов потенциально опасных объектов

По результатам прогнозирования чрезвычайных ситуаций техногенного характера потенциально опасные объекты подразделяются по степени опасности в зависимости от масштабов возникновения чрезвычайных ситуаций на пять классов:

1 класс - потенциально опасные объекты, аварии на которых могут являться источниками возникновения федеральных и (или) трансграничных чрезвычайных ситуаций;

2 класс - потенциально опасные объекты, аварии на которых могут являться источниками возникновения региональных чрезвычайных ситуаций;

3 класс - потенциально опасные объекты, аварии на которых могут являться источниками возникновения территориальных чрезвычайных ситуаций;

4 класс - потенциально опасные объекты, аварии на которых могут являться источниками возникновения местных чрезвычайных ситуаций;

5 класс - потенциально опасные объекты, аварии на которых могут являться источниками возникновения локальных чрезвычайных ситуаций.

1.3. Рекомендации по отнесению потенциально опасных объектов

к классу опасности

Отнесение потенциально опасных объектов к одному из пяти классов опасности осуществляется комиссиями, формируемыми органами исполнительной власти субъектов Российской Федерации. В состав комиссии включаются представители органов управления по делам гражданской обороны и чрезвычайным ситуациям и специально уполномоченных органов в области промышленной, экологической, санитарно-эпидемиологической безопасности, федеральных министерств и иных федеральных органов исполнительной власти, специализированных организаций.

Сведения о классификации представляются комиссиями в МЧС России и в иные федеральные органы исполнительной власти с учетом их компетенции. МЧС России, региональные центры по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий и органы управления по делам гражданской обороны и чрезвычайным ситуациям осуществляют учет потенциально опасных объектов и объектов жизнеобеспечения в установленном порядке.

 

2. прогнозирование техногенных чрезвычайных ситуаций

2.1. Цель и задачи прогнозирования техногенных чрезвычайных ситуаций

Целью прогнозирования техногенных чрезвычайных ситуаций является заблаговременное получение качественной и количественной информации о возможном времени и месте техногенных чрезвычайных ситуаций, характере и степени связанных с ними опасностей для населения и территорий и оценка возможных социально-экономических последствий чрезвычайных ситуаций.

Для достижения указанной цели при прогнозировании решаются следующие основные задачи:

выявление и идентификация потенциально опасных зон с возможными источниками чрезвычайных ситуаций техногенного характера;

разработка возможных вариантов возникновения и развития чрезвычайной ситуации, моделирование развития чрезвычайной ситуации;

оценка вероятности (частоты) возникновения чрезвычайной ситуации по различным сценариям;

моделирование параметров полей поражающих факторов возможных источников чрезвычайной ситуации;

прогнозирование обстановки (инженерной, пожарной, медицинской и др.) в районе возможной чрезвычайной ситуации с целью планирования контрмер и необходимых сил и средств для проведения защитных мероприятий и ликвидации чрезвычайной ситуации;

прогнозирование и оценка возможных социально - экономических и экологических последствий (потери, ущерб);

оценка параметров (показателей) риска и построение карт (полей) риска.

Организация прогнозирования техногенных чрезвычайных ситуаций осуществляется на основе представляемой информации о всех имеющихся в регионе потенциально опасных объектах.

Результаты прогнозирования техногенных чрезвычайных ситуаций учитываются при решении вопросов проектирования, строительства, эксплуатации и вывода из эксплуатации объектов, выдаче разрешений и лицензий на виды деятельности, связанные с повышенной опасностью.

2.2. Организация прогнозирования чрезвычайных ситуаций на потенциально опасных объектах и объектах жизнеобеспечения

Прогнозирование чрезвычайных ситуаций осуществляется на объектовом, местном, территориальном, региональном и федеральном уровнях РСЧС в пределах юрисдикции соответствующих органов управления и организаций.

Организация прогнозирования чрезвычайных ситуаций на федеральном уровне осуществляется МЧС России и координируется Правительственной комиссией по предупреждению и ликвидации чрезвычайной ситуации и обеспечению пожарной безопасности и ведомственными комиссиями по чрезвычайным ситуациям в федеральных органах исполнительной власти.

Организация прогнозирования чрезвычайных ситуаций на региональном уровне (охватывающем территории нескольких субъектов Российской Федерации) - региональными центрами по делам ГОЧС и ликвидации стихийных бедствий.

Организация прогнозирования чрезвычайных ситуаций на территории субъекта Российской Федерации - комиссией по предупреждению и ликвидации чрезвычайных ситуаций субъекта Российской Федерации.

Организация прогнозирования чрезвычайных ситуаций на объектовом уровне – органом управления по делам ГОЧС и комиссией по предупреждению и ликвидации чрезвычайных ситуаций объекта.

Организация прогнозирования на объектовом уровне предусматривает:

учет всех отклонений технологических параметров процессов, оборудования, машин, установок и механизмов от нормативных значений и представление структурными подразделениями объекта (главного механика, главного энергетика, службой КИП, главного архитектора, техники безопасности, главного технолога, технического отдела и др.) сведений в соответствующую службу объекта, на которую возложены функции анализа и обобщения представленных материалов;

ежемесячное рассмотрение отклонений в работе оборудования, нарушений при ведении технологических процессов и инцидентов с руководителями структурных подразделений и специалистами объекта;

разработку мер по повышению безопасной эксплуатации объектов и снижению риска чрезвычайной ситуации;

определение и утверждение показателей риска. Показатели степени риска чрезвычайных ситуаций техногенного характера уточняются организациями, эксплуатирующими потенциально опасный объект, с периодичностью не реже одного раза в пять лет или чаще в случаях проведения реконструкций, изменений технологий, увеличения численности производственного персонала, ужесточения требований по безопасности, смены эксплуатирующей организации или передачи объекта в аренду;

разработку декларации промышленной безопасности с проведением всестороннего анализа риска чрезвычайной ситуации;

ежегодное представление потенциально опасными объектами обобщенных и проанализированных сведений по результатам прогнозирования чрезвычайных ситуаций и выполнении мероприятий по снижению риска, предусмотренных в декларации промышленной безопасности, в орган, специально уполномоченный решать задачи гражданской обороны, задачи по предупреждению и ликвидации чрезвычайных ситуаций в составе или при органе исполнительной власти субъекта Российской Федерации (центр мониторинга и прогнозирования чрезвычайных ситуаций) по месту расположения потенциально опасного объекта.

Представляемые потенциально опасными объектами обобщенные сведения должны содержать следующие данные:

количество нарушений технологических параметров с указанием процентов относительно количества контролируемых параметров;

количество отклонений при эксплуатации основного оборудования по видам и трубопроводов с указанием характера отклонения;

количество нарушений при функционировании средств контроля, регулирования и противоаварийной защиты;

количество отключений или прекращения электро-, тепло-, газо-, водоснабжения;

количество нарушений при ведении ремонтных, огневых и газоопасных работ с указанием процентов от общего количества работ и др.

Кроме того, обобщенные сведения должны содержать выводы о возможных причинах возникновения чрезвычайных ситуаций.

На объекте формируется координирующий орган в области предупреждения чрезвычайной ситуации, разрабатывается и утверждается положение об этом органе.

На основе прогнозирования чрезвычайных ситуаций ежегодно на объекте разрабатываются мероприятия по предупреждению чрезвычайных ситуаций, которые утверждаются руководителем объекта и представляются в орган, специально уполномоченный решать задачи гражданской обороны, задачи по предупреждению и ликвидации чрезвычайных ситуаций в составе или при органе исполнительной власти субъекта Российской Федерации по месту расположения потенциально опасного объекта.

 

Руководящий документ по прогнозированию техногенных чрезвычайных ситуаций разрабатывается на основе Методических рекомендаций по прогнозированию возникновения и последствий чрезвычайных ситуаций в Российской Федерации.

Разработанные мероприятия по предупреждению чрезвычайных ситуаций должны включать:

мероприятия по снижению риска;

мероприятия по повышению уровня подготовки руководителей и служащих к действиям по предупреждению и ликвидации чрезвычайной ситуации;

мероприятия по подготовке объектов, их сил и средств к действиям по предупреждению и ликвидации чрезвычайной ситуации;

мероприятия по организации обучения, тренировок и учений;

мероприятия по поддержанию в готовности системы оповещения в случае возникновения аварий или чрезвычайных ситуаций;

мероприятия по созданию резервов материальных и финансовых ресурсов;

меры по осуществлению страхования гражданской ответственности за причинение вреда при эксплуатации опасного объекта;

мероприятия по предотвращению постороннего вмешательства в деятельность объекта, а также по противодействию возможным террористическим актам и др.

Организация прогнозирования на территориальном, региональном, федеральном уровнях предусматривает:

организацию взаимодействия между различными функциональными подсистемами РСЧС;

обобщение органом, специально уполномоченным решать задачи гражданской обороны, задачи по предупреждению и ликвидации чрезвычайных ситуаций сведений, получаемых от потенциально опасных объектов и территориальных органов надзора и контроля, входящих в состав РСЧС.

представление органом, специально уполномоченным решать задачи гражданской обороны, задачи по предупреждению и ликвидации чрезвычайных ситуаций в составе или при органе исполнительной власти субъекта Российской Федерации обобщенных сведений о результатах прогнозирования чрезвычайных ситуаций в региональные центры для последующего направления в МЧС России;

представление ежегодно федеральными органами исполнительной власти обобщенных сведений по результатам прогнозирования чрезвычайных ситуаций, осуществляемых мерах по их предупреждению и повышению безопасности в МЧС России;

организацию обмена оперативными сводками между федеральными органами исполнительной власти и органами исполнительной власти субъектов Российской Федерации и регламентацию форм отчетности об авариях и чрезвычайных ситуациях (ежесуточных, ежемесячных, ежеквартальных и др.);

создание в органах исполнительной власти субъектов Российской Федерации, МЧС России и других федеральных органах исполнительной власти необходимых банков данных по прогнозированию чрезвычайных ситуаций;

создание федеральными органами исполнительной власти и органами исполнительной власти субъектов Российской Федерации пакетов необходимой научно-технической и методической документации по прогнозированию чрезвычайных ситуаций;

разработку методологий и методик вариантных прогнозов возникновения, развития и ликвидации последствий чрезвычайных ситуаций.

2.3. Методы прогнозирования техногенных чрезвычайных ситуаций

 

По длительности периода времени, на который распространяется прогноз, прогнозирование условно подразделяется на три типа:

долгосрочное;

среднесрочное;

краткосрочное (оперативное).

Конкретные сроки разрабатываемых прогнозов зависят от типа (специфики) прогнозируемой чрезвычайной ситуации, а по порядку величины примерно соответствуют: для долгосрочного прогноза - годам, для среднесрочного - месяцам, для краткосрочного - дням, часам.

Прогнозирование чрезвычайной ситуации предполагает в общем случае выполнение трех последовательных взаимосвязанных этапов (стадий), схематически представленных на рисунке 1.

 
 

 


Рис.1. Основные этапы прогнозирования.

Первый этап - выявление, идентификация и оценка потенциально опасного события (аварии, катастрофы). Этот этап складывается из нескольких последовательных подэтапов:

выбор и обоснование критериев выделения опасных объектов;

анализ обстановки в районе потенциально опасного объекта;

идентификация особо опасных объектов;

классификация (систематизация) опасностей по степени проявления и тяжести социально-экономических и экологических последствий;

организация комплексной экспертизы потенциально опасного объекта экономики (города, района);

организация лицензирования и декларирования безопасности потенциально опасного объекта.

Второй этап - составление программы или плана действий по предупреждению чрезвычайной ситуации обусловленной всесторонне оцененной на первом этапе возможной аварией (катастрофой) на потенциальной опасном объекте.

Основными последовательными подэтапами данного этапа являются:

организация систем локального и регионального мониторинга;

составление планов и программ предупреждения техногенных опасностей, защите населения и территорий;

организация взаимодействия объектовых комиссий по предупреждению и ликвидации чрезвычайных ситуаций с местными и территориальными комиссиями по предупреждению и ликвидации чрезвычайных ситуаций;

организация работы с населением и средствами массовой информации;

организация обучения и учений по ликвидации потенциальных чрезвычайных ситуаций;

организация медицинского, санитарно-эпидемиологического и других видов обеспечения населения в условиях чрезвычайной ситуации;

анализ и совершенствование систем аварийного оповещения;

организация структуры, техническое оснащение и информационное обеспечение органов управления, сил и средств объектовых и территориальных служб предупреждения и ликвидации чрезвычайных ситуаций;

создание комплексной программы оценки уровней техногенных рисков в регионе.

По результатам работ, проведенных на втором этапе, может проводиться повторная оценка опасного объекта, проводившаяся на первом этапе.

Третий этап прогнозирования (собственно прогнозный) - составление разновариантного прогноза наступления чрезвычайной ситуации в результате опасного техногенного события с учетом принятых (или не принятых) мер по оценке его последствий.

На этапе составления прогнозов предусматривается выявление (выбор) и моделирование различных вариантов (сценариев) возникновения и развития чрезвычайной ситуации.

Основными методами исследования на этом этапе являются: системный анализ, математическое и физическое моделирование, использование геоинформационных систем, вероятностный анализ, экспертные оценки и др.

Конечным результатом этого этапа в общем случае должно быть построение карты техногенных рисков для рассматриваемой территории (региона) и её зонирование по типу и степени проявления опасностей для населения с целью планирования и осуществления комплекса мероприятий по предупреждению и ликвидации чрезвычайных ситуаций.

Прогнозирование чрезвычайных ситуаций осуществляется на основании данных анализа, проведенного при исследовании различных видов чрезвычайных ситуаций при осуществлении хозяйственной деятельности. Анализ обычно осуществляется с идентификации причин возможных чрезвычайных ситуаций и механизма вероятного воздействия их на различные группы населения.

К настоящему времени создан обширный арсенал методов прогноза (оценки на определенный момент или интервал времени в будущем) рисков чрезвычайных ситуаций природного и техногенного характера. По назначению они делятся на два вида:

методы прогнозирования возникновения чрезвычайных ситуаций;

методы прогнозирования последствий чрезвычайных ситуаций.

Методы прогнозирования чрезвычайных ситуаций по прогнозируемым параметрам делятся на методы прогноза места, силы, времени наступления или частоты (повторяемости) чрезвычайных ситуаций. По времени упреждения методы прогноза времени наступления чрезвычайной ситуации, в свою очередь, можно разделить на несколько видов: долгосрочного, среднесрочного и краткосрочного прогнозирования. В зависимости от используемых исходных данных различают вероятностно-статистический, вероятностно - детерминированный и детерминированно - вероятностный подходы к прогнозированию возникновения чрезвычайной ситуации (инициирующих событий для чрезвычайной ситуации).

Вероятностно-статистический метод основан на представлении природных явлений на рассматриваемой территории или аварийных ситуаций на совокупности однотипных объектов, проходящих потоком случайных событий. Данный подход используется для оценивания частот опасных природных явлений и аварийных ситуаций определенного вида, а также их распределений по силе на основе данных многолетних наблюдений.

Вероятностно - детерминированный метод основан на установлении законов и закономерностей развития природных процессов во времени и пространстве, цикличности природных явлений, что можно использовать для целей их долго- и среднесрочного прогнозирования. Применительно к объектам техносферы вероятностно-детерминированный подход основан на установлении закономерностей развития деградационных процессов, накопления повреждений, образования и распространения трещин, приводящих к авариям и чрезвычайным ситуациям. Исходной информацией для расчета долгосрочных прогнозов являются данные многолетних наблюдений, а для расчета среднесрочных прогнозов - данные мониторинга.

Детерминированно - вероятностный метод используется для краткосрочного (дни, часы) прогнозирования по предвестникам и оперативной информации времени наступления, места и силы экстремального природного явления. Подход применим и для прогнозов аварийных ситуаций на технических объектах с непрерывным контролем технического состояния. Для своевременного прогнозирования и обнаружения опасного природного или техногенного процесса ни стадии его зарождения необходимо установление предвестников стихийных бедствий, аварий и катастроф, на основе изучения которых строятся модели прогнозов этих процессов.

Методы прогнозирования последствий чрезвычайных ситуаций хорошо развиты применительно к чрезвычайным ситуациям техногенного характера. По времени проведения данные методы можно разделить на две группы:

методы, основанные на априорных (предполагаемых) оценках, полученных с помощью теоретических моделей и аналогий;

методы, основанные на апостериорных оценках (оценки последствий уже происшедших чрезвычайных ситуаций).

По используемой исходной информации методы прогнозирования последствий чрезвычайных ситуаций делят на:

экспериментальные, основанные на обработке данных произошедших чрезвычайных ситуаций;

расчетно-экспериментальные, когда имеющиеся статистические данные обрабатывают с помощью математических моделей (ММ);

расчетные, основанные на использовании только ММ.

Для своевременного прогнозирования техногенных чрезвычайных ситуаций необходима хорошо отлаженная общегосударственная система мониторинга за состоянием техносферы страны. В МЧС России разработан один из методов прогнозирования техногенных чрезвычайных ситуаций на территории России, который определяет последовательность оценки и прогнозирования техногенной опасности на территории Российской Федерации с использованием комплекса средств автоматизации и связи информационно - прогностического комплекса. Основные этапы данного метода представлены на рис.2.

Обработка и анализ статистической информации и определение весовых коэффициентов по видам техногенных чрезвычайных ситуаций для субъектов Российской Федерации
Определение сезонных (месячных) коэффициентов, характеризующих динамику техногенной опасности субъектов Российской Федерации
Выявление субъектов Российской Федерации с тенденцией увеличения техногенной опасности на прогнозируемый период в сравнении с предыдущим периодом
Обработка и анализ информации о структуре экономики субъектов Российской Федерации (количество и тип потенциально опасных объектов, численность рабочих и служащих, доля производственного персонала)
Анализ потенциального влияния природных чрезвычайных ситуаций на возможность возникновения источника техногенной опасности в субъектах Российской Федерации
Выбор субъектов Российской Федерации с повышенной техногенной опасностью на прогнозируемый период
Прогноз количественных показателей техногенной опасности субъекта Российской Федерации на прогнозируемый период: прогнозируемое количество техногенных чрезвычайных ситуаций по видам, условная вероятность возникновения техногенных чрезвычайных ситуаций по видам
Выявление потенциально опасных объектов с наибольшей степенью техногенной опасности в соответствии с прогнозом

Рис.2. Основные этапы прогнозирования чрезвычайных ситуаций

техногенного характера.


Лекция 2

 

Тема: Определение опасности техногенных чрезвычайных ситуаций

План лекции:

1. Методы оценки вероятностей или частоты возникновения чрезвычайных ситуаций.

2. Установление степени риска техногенной чрезвычайной ситуации

1. Методы оценки вероятностей или частоты возникновения чрезвычайных ситуаций.

Выбор метода для проведения оценок риска возникновения аварийных ситуаций и сценариев их развития в общем случае определяется исходя из следующих обстоятельств: наличия соответствующих исходных данных, компетенции исполнителей, целей проведения оценок, выделенных ресурсов (времени, сил и средств).

Методы оценки вероятностей возникновения чрезвычайных ситуаций и реализации тех или иных сценариев развития чрезвычайных ситуаций в общем случае делятся на феноменологические, детерминистские, вероятностные, а также различные их модификации и комбинации.

Феноменологический метод базируется на определении возможностей протекания аварийных процессов исходя из результатов анализа необходимых и достаточных условий, связанных с реализацией тех или иных законов природы. Феноменологический метод предпочтителен при сравнении запасов безопасности различных типов потенциально опасных объектов, но малопригоден для анализа разветвленных аварийных процессов, развитие которых зависит от надежности тех или иных частей объекта или (и) его средств защиты.

Детерминистический метод предусматривает анализ последовательности этапов развития нарушений равновесного состояния системы, начиная с исходного события через последовательность предполагаемых стадий отказов, деформаций и разрушения компонентов до установившегося конечного состояния системы с помощью математического моделирования, построения имитационных моделей и проведения сложных расчетов.

Вероятностный метод основан на оценке вероятности возникновения чрезвычайной ситуации. При этом анализируется разветвленные цепочки событий и отказов оборудования, выбирается подходящий математический аппарат и оценивается полная вероятность аварий, приводящих к чрезвычайной ситуации. Основные ограничения вероятностного анализа безопасности связаны с недостаточностью сведений по функциям распределения параметров, а также недостаточной статистикой по отказам оборудования. Кроме того, применение упрощенных расчетных схем снижает достоверность получаемых оценок риска для тяжелых аварий. В зависимости от имеющейся (используемой) исходной информации на основе вероятностного метода могут быть реализованы различные методики оценки риска, в том числе:

статистическая, когда вероятности определяются по имеющимся статистическим данным, т.е. при наличии представительной выборки данных по частоте возникновения различных причин инициирования аварий;

теоретико-вероятностная, используемая для оценки рисков от редких событий, когда статистика практически отсутствует;

эвристическая, основанная на использовании субъективных вероятностей, получаемых с помощью экспертного оценивания. Используется при оценке комплексных рисков от различных опасностей, когда отсутствуют не только статистические данные, но и математические модели (либо модели слишком грубы, т.е. их точность низка) и при невозможности проведения модельных экспериментов.

Множество причин возникновения аварий или чрезвычайных ситуаций делятся на четыре основные класса:

1) отказы оборудования;

2) отклонения от технологического регламента;

3) ошибки производственного персонала;

4) внешние причины (стихийные бедствия, катастрофы, диверсии и т.д.).

Для каждого из приведенных классов существуют методы, позволяющие или построить сценарий развития аварии или определить частоту ее возникновения.

Для анализа фазы инициирования аварий, вызываемых отказами оборудования, наиболее часто используется метод дерева неполадок. Одним из главных достоинств метода является систематичное, логически обоснованное, построение множества отказов элементов системы, которые могут приводить к аварии. Этот метод требует от исследователя полного понимания функционирования системы и характера возможных отказов ее элементов. Данный метод является методом "обратного осмысливания", т.е. исследователь начинает с аварии или другого нежелательного события (обычно называемого верхним нежелательным событием) и рассматривает события, которые могут приводить к его реализации. Затем исследуются причины возникновения этих событий и т.д., до тех пор, пока не будут выявлены все первичные события, анализ причин возникновения которых не проводится или в силу отсутствия необходимой информации, или из-за нежелания рассматривать слишком громоздкую структуру. Результатом анализа дерева неполадок является перечень комбинаций отказов оборудования. Каждая такая комбинация (их называют минимальными прерывающими совокупностями) является минимальным набором отказов оборудования, одновременная реализация которых приводит к аварии.

Каждый технологический процесс характеризуется некоторым набором переменных процесса, отклонения которых от своих рекомендованных значений могут приводить к непредвиденным химическим реакциям, превышению рабочего давления и/или температуры и, как следствие, к повреждению (разрушению) технологического оборудования. Для оценки устойчивости процесса используют различные методы, одним из которых является метод контрольных карт. Контрольные карты процесса позволяют визуально контролировать соответствующие переменные процесса и определять появление систематических отклонений. Контрольные карты являются достаточно надежным и эффективным методом, позволяющим выявлять отклонения от нормального хода процесса.

Для анализа технологических установок на стадии их проектирования применяется метод изучения опасностей и функционирования. Применение данного метода начинается не с определения видов возможных неполадок, а с изучения системных переменных (переменных процесса) и их отклонений от нормы. Данный метод основан на том, что развивающиеся или уже существующие неполадки проявляются в той или иной мере в отклонениях переменных процесса от обычно наблюдаемого уровня. (Следует отметить схожесть основной идеи метода изучения опасностей и функционирования с идеей метода контрольных карт.) Применение метода начинается с исследования структуры системы и протекающих в ней процессов, и анализа каждого возможного отклонения переменных от нормального значения, а затем выявляются возможные причины и следствия этих отклонений. Результаты исследований для каждого из параметров процесса заносятся в специальные таблицы.

Метод анализа ошибок персонала предназначен для качественной оценки событий, связанных с ошибками персонала. Он также может быть использован для разработки рекомендаций по снижению вероятности таких ошибок. Ошибка персонала - это действие, которое выполняется или не выполняется при некоторых условиях. Это могут быть физические действия (поворот рукоятки) или действия, связанные с умственной деятельностью (диагностика отказов или принятие решения).

Количественные характеристики ошибок персонала получают с помощью метода прогноза частоты ошибок персонала или плана развития последовательности событий. Внешние события могут инициировать аварии на различных объектах. Хотя частота наступления таких событий достаточно мала, они могут приводить к крупномасштабным последствиям. Внешние события могут быть поделены на две категории - природные явления (землетрясения, наводнения, ураганы, высокая температура, грозовые разряды и т.д) и явления, возникающие в результате деятельности людей (авиакатастрофы, падение ракет, деятельность соседних промышленных объектов, диверсии и т.д.). Включение в дерево неполадок внешних причин требует от исследователя не только понимания особенностей функционирования анализируемой системы, но и ее взаимосвязей с другими системами и природными явлениями.

Изложенные методы оценки частот реализации чрезвычайных ситуаций техногенного характера свидетельствуют о трудоемкости построения комплексных показателей риска для населения региона.

Для оценки комплексных показателей риска для населения и территорий регионов использован методический подход, получивший название "метод дерева событий". Данный метод позволяет проследить возможные аварийные ситуации, возникающие вследствие реализации отказа оборудования или прерывания процесса, которые выступают в качестве исходных событий. В отличие от метода дерева неполадок анализ дерева событий представляет собой "осмысливаемый вперед" процесс, то есть процесс, при котором пользователь начинает с исходного события и рассматривает цепочки последующих событий, приводящих к аварии. Дерево событий предоставляет возможность в строгой форме записывать последовательности событий и определять взаимосвязи между инициирующими и последующими событиями, сочетание которых приводит к аварии. Наиболее важные из них определяются или путем ранжирования, или путем количественного анализа. Метод дерева событий хорошо приспособлен для анализа исходных событий, которые могут приводить к различным эффектам. Каждая ветвь дерева событий представляет собой отдельный эффект (последовательность событий), который является точно определенным множеством функциональных взаимосвязей.

Построение деревьев событий для каждой чрезвычайной ситуации природного и техногенного характера и проведение расчетов с использованием деревьев событий позволяет (на основе построения полей поражающих факторов и проведения оценки последствий) оценить частоты гибели людей и возникновения материального ущерба различного масштаба от всех природных и техногенных чрезвычайных ситуаций, характерных для региона.

 

2. Установление степени риска техногенной чрезвычайной ситуации

Для установления степени риска техногенной чрезвычайной ситуации определяются:

расчетные сценарии возможных крупных аварий, приводящих к чрезвычайной ситуации, (условия возникновения, поражающие факторы, продолжительность их воздействия и масштабы);

частоты и вероятности возникновения чрезвычайной ситуации по каждому из выбранных расчетных сценариев;

границы зон, в пределах которых может осуществляться поражающее воздействие источника чрезвычайной ситуации;

распределение людей (производственного персонала и населения) на территории, в пределах которой может осуществляться поражающее воздействие источника чрезвычайной ситуации.

Определение степени риска чрезвычайной ситуации техногенного характера производится на основе нормативно-методической документации в области предупреждения чрезвычайных ситуаций, защиты населения и территорий от их воздействия.

При отсутствии достаточных исходных данных для определения степени риска чрезвычайной ситуации на конкретных потенциально опасных объектах допускается использование информации об оценках риска для объектов – аналогов, а также статистические данные о частотах аварий для отдельных видов технологического оборудования и коммуникаций.

В практике проведения работ в области анализа риска для персонала промышленных объектов и населения пользуются, чаще всего, определениями индивидуального и социального риска.

Проблема анализа риска для населения от чрезвычайных ситуаций (в данном случае получение количественных показателей уровней природных и техногенных рисков) включает в себя решение следующих задач:

оценка вероятности (частоты) реализации нежелательного события (аварии или чрезвычайные ситуации природного характера);

построение полей поражающих факторов, возникающих при различных сценариях развития чрезвычайной ситуации;

оценка последствий воздействия поражающих факторов на человека (или другие материальные объекты).

При обосновании мероприятий по предупреждению аварий, катастроф и смягчению их последствий за риск обычно принимают интегральный показатель, включающий как вероятность наступления нежелательного события за год, так и связанный с ним ущерб.

Исходя из характера определяют вид риска – индивидуальный, социальный, экономический, экологический и т.п.

Оценка индивидуального риска для наиболее распространенных чрезвычайных ситуаций, приведены в "Методике оценки комплексного индивидуального риска чрезвычайных ситуаций природного и техногенного характера", включенной в перечень нормативных документов в разделе 9 настоящих рекомендаций.

Построение зон риска и зон поражающих факторов можно автоматизировать на основе использования геоинформационной системы (ГИС).

Структура геоинформационной системы, как правило, может включать в себя 4 укрупненных блока, показанных на рис. 3.

 

    Геоинформационная система    
         
Блок базы данных   Блок математических моделей   Блок выбора и оптимизации мероприятий по уменьшению рисков   Блок выходных данных и документирования
 
                             

 

Рис. 3. Концептуальная схема геоинформационной системы

 

В рамках блокабазы данных информационные массивы могут быть распределены и структурированы в четыре группы. Первая группа включает цифровые топографические данные.

Вторая группа данных предназначена для описания уровня опасности. Эта же группа может включать данные о природных опасностях, вторичных инженерно-геологических и техногенных процессах и данные об опасных объектах, в т.ч. газопроводах, нефтепроводах, АЭС, ГЭС и др.

Третья группа информации позволяет описать различные элементы риска (население, существующие здания и сооружения, инфраструктура, системы жизнеобеспечения, особо ответственные объекты).

Четвертая группа объединяет параметры законов разрушения зданий, поражения людей, а также параметры моделей для определения перечня мероприятий по понижению рисков и оперативному реагированию в случае ЧС.

Все четыре группы информационных массивов должны быть связаны единым координатным пространством и единой системой мер.

В рамках блока математических моделей можно получить:

распределение интенсивностей землетрясений, значения максимальных ускорений колебаний грунта и их повторяемость;

поля поражающих факторов в случае аварий на опасных объектах;

законы разрушения зданий различного типа, характерного для рассматриваемого региона;

законы поражения людей, учитывающие специфику территории;

оценки последствий землетрясений, вторичных природных и техногенных процессов;

оценки последствий на пожаровзрывоопасных, радиационно и химически опасных объектах;

оценки индивидуальных, сейсмических, инженерных, экономических и комплексных рисков.

В рамках блока выбора и оптимизации мероприятий по уменьшению рисков на основе расчетной информации о возможных или реальных экономических, социальных потерях и об уровне риска возможно принятие оптимального решения о снижении возможных негативных последствий (проведении превентивных мероприятий) или немедленном реагировании.

Блок выходных данных и документирования обеспечивает оформление полученных результатов в виде таблиц, графиков и тематических карт.

При проведении расчетов показателей риска от техногенных аварий расчетные задачи, работающие в составе геоинформационной системы, автоматически подключают необходимые базы данных. В состав ГИС включаются программы по оценке индивидуальных рисков при авариях на пожаровзрывоопасных объектах, радиационно и химически опасных объектах и др. Для оценки природных воздействий в состав ГИС включаются программы расчета рисков при землетрясениях, наводнениях, пожарах и др.

Применение ГИС обеспечивает автоматизированное построение тематических карт различного содержания за сравнительно короткий промежуток времени (в зависимости от детальности информации это единицы, редко десятки минут).

Снижение риска требует значительных материальных затрат, что при нынешнем состоянии экономики государства практически невозмож­но. Поэтому установление уровней риска от 10-5 и ниже (что соответствовало бы большинству примеров из международной практики) в настоящее время не может быть обеспечено для всех территорий вблизи промышленных объектов.

Но в практике обеспечения пожарной безопасности критерии приемлемого риска имеют значения от 10-5 до 10-8. Общие требования пожарной безопасности к технологическим процессам различного назначения всех отраслей экономики страны и любых форм собственности при их проектировании, строительстве, реконструкции, вводе, эксплуатации и прекращении эксплуатации, а также при разработке и изменении норм технологического проектирования и других нормативных документов определены ГОСТ Р 12.3.047-98 "Пожарная безопасность технологических процессов. Общие требования. Методы контроля". Пожарная безопасность технологических процессов считается безусловно выполненной, если индивидуальный риск меньше 10-8, а социальный риск меньше 10-7. Эксплуатация технологических процессов является недопустимой, если индивидуальный риск больше 10-6 или социальный риск больше 10-5. При этом оценку социального и индивидуального риска при аварии проводят на основе расчета поражающих факторов пожара и принятых мер по снижению их вероятности и последствий.

 

Заключение

 

На основе прогноза основных опасностей на ближайшую перспективу можно сделать следующие выводы:

1. Проблемы предупреждения и ликвидации ЧС приобретают все более взаимосвязанный комплексный характер. В связи с этим начало 21 века должно характеризоваться переходом к комплексному управлению системой безопасности окружающей среды, человека, общества и государства.

2. Усложняющийся характер опасностей различного характера потребует новых подходов в деятельности по противодействию им. Должна получить дальнейшее развитие методология управления рисками ЧС. На первое место в государственной политике по обеспечению безопасности населения и территорий должна встать культура предупреждения ЧС.

3. В 21 веке решение проблем безопасности человека, общества и государства должно осуществляться в рамках единой государственной стратегии устойчивого безопасного развития.

 

 

Профессор кафедры «Пожарная безопасность»

В. Алчинов

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 8021; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.