Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Доказательство. Дифференцируемость функции




Дифференцируемость функции

 

Определение. Если приращение функции y = f(x) при х = х0 можно представить в виде

, (2)

где A = const, то y = f(x) называется дифференцируемой при х = х0, а АΔх называется главной линейной частью приращения или дифференциалом функции.

Обозначение: dy = АΔх.

 

Замечание. Так как при у = х получаем dx = 1·Δx, можно обозначать Δх = dx.

 

Теорема. Функция дифференцируема в некоторой точке тогда и только тогда, если она имеет в этой точке производную.

1) Если для y=f(x) существует , то , где β(Δх) – бесконечно малая при Δх→0. Тогда . Следовательно, функция y = f(x) дифференцируема при х = х0, причем А = f`(x0).

2) Пусть y=f(x) дифференцируема при х=х0, то есть ее приращение имеет вид (17.2). Тогда . Таким образом, f(x) имеет производную в точке х0, равную А.

 

Следствие. Дифференциал функции можно представить в виде , а производную – в виде .

 

Теорема. Если функция дифференцируема в некоторой точке, то она непрерывна в этой точке.

Доказательство. Из формулы (17.2) следует, что, что и означает непрерывность f(x) при х = х0.

Замечание. Обратное утверждение неверно, то есть из непрерывности функции не следует ее дифференцируемость. Например, y = |x| непрерывна при х = 0, но не дифференцируема в этой точке.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 574; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.