Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механические свойства материалов

Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.

По характеру изменения во времени действующей нагрузки механические испытания делятся на статические (на растяжение, сжатие, изгиб, кручение); динамические (на ударный изгиб) и циклические (на усталость).

По воздействию температуры на процесс их делят на испытания при комнатной температуры, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).

Статические испытания проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет 10-4–10-1 с-1. Статические испытания на растяжение относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим испытаниям относятся: растяжение, сжатие, изгиб, кручение.

Динамические испытания характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность испытания не превышает сотен долей секунды. Скорость деформации составляет около 102 с-1. Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.

Циклические испытания характеризуются многократными изменениями нагрузки по величине и по направлению. Примером испытаний являются испытания на усталость, они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, которые образец выдерживает без разрушения в течение определенного числа циклов нагружения.

Простейшим механическим свойством является твердость. Способы определения твердости делятся, в зависимости от скорости приложения нагрузки, на статические и динамические а по способу ее приложения – на методы вдавливания и царапания. Методы определения твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.

Твердость это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.

При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы испытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и некоторые другие.

При испытании материалов на твердость не изготавливают стандартных специальных образцов, однако к размерам, поверхности образцов и изделий предъявляются определенные требования.

Твердость по Виккерсу (ГОСТ 2999-75) определяют путем вдавливания в металл индентора алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки (Р): 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой 10–15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов – от 2,5 до 50 кгс, алюминиевых сплавов – от 1 до 100 кгс. После снятия нагрузки определяют длину диагонали отпечатка с помощью микроскопа прибора, а твердость HV рассчитывают по формуле

где Р – нагрузка, кгс; d – диагональ отпечатка, мм.

В стандарте на испытание имеется таблица зависимости твердости от величины нагрузки и длины диагонали. Поэтому на практике расчетов не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HV измеряется в кгс/мм2, Н/мм2 или в МПа. Значение твердости по Виккерсу может изменяться от HV 2060 до HV 5 при нагрузке 1 кгс.

По методу Бринелля вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3 000, 1 000, 750, 500, 250, 62,5 кгс и других (ГОСТ 9012-59). Схема определения твердости по Бринеллю показана на рис. 1.20. Полученный круглый отпечаток на образце измеряют лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.

Твердость НВ – это также величина напряжений сопротивления вдавливанию, т.е. физическая величина:

где Р – нагрузка, кгс; D – диаметр шарика, мм; t – глубина сегмента отпечатка; d – диаметр отпечатка, мм.

 

Рис. 1.20. Схема определения твердости по Бринеллю.

Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм2, например, твердость алюминиевого сплава равна 70 НВ. При нагрузке, определяемой в ньютонах, твердость по Бринеллю измеряется в МПа.

Например, твердость отожженной стали равна 207 НВ при нагрузке 3 000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 ньютон = 9,8 кгс, НВ = 2028 МПа.

По методу Роквелла (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120о (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В). При этом определяют твердость, соответственно, HRA, HRC и HRB. В настоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Роквелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.

Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок – предварительной Р0 и основной P1, которая добавляется к предварительной, так что общая нагрузка Р = Р0 + Р1. После выдержки в течение нескольких секунд основную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предварительной нагрузки. Перемещение основной стрелки индикатора на одно деление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.

На рис. 1.21 представлена схема измерения твердости по методу Роквелла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором – алмазным конусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как

 

По шкале В (нагрузка 100 кгс, шарик)

 

 

Рис. 1.21. Схема определения твердости по Роквеллу (индентор – конус).

На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB – для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной нагрузкой.

Механические свойства металлов при растяжении. Испытание на растяжение материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, упругости, текучести, временного сопротивления разрыву, относительного удлинения и относительного сужения, модуля упругости.

Для испытаний применяют плоские и цилиндрические образцы, вырезанные из детали или специально изготовленные. Размеры образцов регламентированы указанным стандартом, они подчиняются геометрическому подобию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l 0 и исходного диаметра d0: l 0 = 5d0 – короткий образец, l 0 = 10d0 – длинный образец. Для плоского образца берется соотношение рабочей длины l 0 и площади поперечного сечения F0: l 0 = 5,65 ÖF0 – короткий образец, l 0 = 11,3 ÖF0 – длинный образец. Цилиндрические образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l 0, и головок, форма и размер которых соответствует захватам машины (рис. 1.22).

Рис. 1.22. Цилиндрические и плоские образцы до и после испытания на растяжение.

Рис. 1.23. Первичная диаграмма растяжения.

Растяжение образца проводят на специальных машинах, фиксирующих величину прилагаемой нагрузки и изменение длины образца при растяжении.

Эти же машины позволяют записывать изменение длины образца при увеличении нагрузки (рис. 1.23), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка (Р), в Н, кН и абсолютное удлинение образца Δ l в мм.

Измеряя величину нагрузки в характерных точках диаграммы испытаний на растяжение (рис. 1.23), определяют следующие характеристики механических свойств материалов:

σ пц – предел пропорциональности, точка р;

σ0,05 – предел упругости, точка е;

σт – предел текучести физический, точка s;

σ0,2 – предел текучести условный;

σв – временное сопротивление разрыву или предел прочности, точка b.

Значения 0,05 и 0,2 в записи предела упругости и текучести соответствуют величине остаточной деформации Δ l в процентах от l 0 при растяжении образца. Напряжения при испытании на растяжение определяют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F0 рабочей части испытуемого образца:

 

Площадь поперечного сечение F0 определяется следующим образом:

для цилиндрического образца

для плоского образца F0 = a0 × b0, где a0 – первоначальная толщина, а b0 – первоначальная ширина образца. В точке k определяют напряжение сопротивления разрушению материала.

Предел пропорциональности и предел упругости определяют с помощью тензометра (прибор для определения величины деформации). Предел текучести физический и условный рассчитывают, определяя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходимо провести графические построения на диаграмме (рис. 1.24). Вначале находят величину остаточной деформации, равную 0,2 % от l 0, далее отмечают отрезок на оси деформации, равный 0,2 % от l 0, и проводят линию, параллельную пропорциональному участку диаграммы растяжения до пересечения с кривой растяжения. Нагрузка Р0,2 соответствует точке их пересечения. Физический или условный предел текучести характеризует способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.

 

Рис. 1.24. Определение предела текучести.

Предел прочности можно подсчитать, используя показание силоизмерителя, по максимальной нагрузке Pmax при разрыве; либо найти Pmax (Pв) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.

Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σв для хрупких материалов является характеристикой сопротивления разрушению, а для пластичных – характеристикой сопротивления деформации.

Напряжение разрушения определяют как истинное. При этом нагрузку разрушения делят на конечную площадь поперечного сечения образца после разрушения (Fк):

Все рассчитанные таким образом величины являются характеристиками прочности материала.

Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют характеристики пластичности: относительное удлинение

и относительное сужение

где l к и F к – соответственно, длина рабочей части и площадь поперечного сечения образца после разрыва.

Рассчитанные характеристики механических свойств после испытания а растяжение заносят в протокол.

Механические свойства металлов при сжатии. Для хрупких материалов с низким сопротивлением разрыву проводят испытание на сжатие по ГОСТ 25.503-97. Для испытания используют цилиндрические образцы с гладкими торцами и торцовыми выточками.

При сжатии находят следующие характеристики сопротивления деформации: предел пропорциональности , предел упругости , физический предел текучести , условный предел текучести , предел прочности . Напряжения рассчитываются как отношение соответствующей нагрузки к площади сечения образца до деформации. Предел прочности можно рассчитать без записи диаграммы сжатия, для остальных расчетов необходима первичная диаграмма испытания.

Диаграмма сжатия пластичных образцов отличается от диаграммы хрупких образцов. Высокопластичные материалы не удается разрушить при сжатии, и они сплющиваются. Поэтому временное сопротивление сжатию пластичных образцов можно определить лишь условно, т.к. после участка упрочнения происходит быстрое нарастание сплющивания образца. Хрупкие материалы разрушаются при незначительных деформациях и предел прочности находят по отношению максимальной нагрузки к первоначальной площади сечения образца. У хрупких материалов, например чугуна, сопротивление сжатию выше, чем сопротивление растяжению. Многие хрупкие материалы при сжатии разрушаются вследствие среза или скалывания по плоскостям под углом 45° к оси образца.

К характеристике пластичности при сжатии относят ε – относительное укорочение образца: где h0, hk – начальная и конечная высота образца.

Испытания на изгиб. Испытание на изгиб проводят по ГОСТ 14019-80 по двум схемам: сосредоточенной нагрузкой, приложенной в середине пролета, и при чистом изгибе (рис. 1.25).

Рис. 1.25. Схема изгиба сосредоточенной силой (а) и двумя симметричными нагрузками (б).

В результате испытания находят предел пропорциональности, предел упругости, предел текучести с точным замером величины деформации. Предел прочности при изгибе рассчитывают σизг: где Мизг – наибольший изгибающий момент, равный при первой схеме нагружения Мизг = Р l /4, а по второй схеме – Мизг=Ра; W – момент сопротивления, характеристика поперечного сечения бруса, для образцов круглого сечения W = π×d3/32; для образцов прямоугольного сечения W = bh2/6, где h – высота бруса.

Пластичность характеризует fразр (величина прогиба), деформация, которая зависит от материала, длины образца, момента инерции и т.д.

Динамические испытания. Испытания на ударный изгиб. Важной характеристикой механических свойств является ударная вязкость, характеризующая удельную работу, затрачиваемую на разрушение при ударе образца с надрезом. Ударная вязкость определяется при испытании на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания от –100 до +1 000 °С. Метод основан на разрушении ударом маятникового копра образца с концентратором напряжений. В результате испытания определяют полную работу, затраченную при ударе К или ударную вязкость КС.

Используют образцы прямоугольной формы с концентратором типа U, V, T (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55×10×10 мм с U концентратом 2×2 мм (рис. 1.26).

Рис. 1.26. Стандартный образец с U-образным надрезом для испытаний на ударный изгиб.

На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает двигаться, отклоняясь на определенный угол. Чем больше величина работы, затрачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. Величиной этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения K относят к площади поперечного сечения образца S0 в месте излома, и тем самым определяют KC ударную вязкость: КС = К/S0, где К измеряется в Дж (кгс·м), S0 в м2 (см2).

В зависимости от вида концентратора ударная вязкость обозначается KCU, KCV, KCT и имеет размерность МДж/м2 (МДж/см2) или кгс·м/см2.

 

Контрольные вопросы и задания

1. Какие типы кристаллических решеток характерны для чистых металлов?

2. Изобразите решетки кристаллов ОЦК, ГЦК, ГПУ, укажите их координационное число и плотность упаковки.

3. Какие типы связей характерны для металлов Al, Cu, Fe; полуметаллов Bi, Si и неметаллических материалов?

4. Опишите типичные признаки металлического состояния.

5. Какие дефекты кристаллического строения присутствуют в реальных кристаллах?

6. Опишите строение пластмасс и других неметаллических материалов.

7. Охарактеризуйте основные методы исследования материалов.

8. В чем заключается макроанализ материалов?

9. Что можно определить при исследовании микроструктуры?

10. Как приготовить объекты исследования для макро- и микроанализа?

11. Опишите преимущества электронной микроскопии при исследовании материалов.

11. Какие задачи можно решать, применяя рентгеновские методы анализа для изучения материалов?

12. Какие требования предъявляют к выбору материала при изготовлении изделий?

13. Опишите химические свойства материалов.

14. Какие виды коррозии возможны в материалах при их эксплуатации в агрессивных средах?

15. Опишите физические и теплофизические свойства материалов.

16. Охарактеризуйте механические свойства материалов.

17. Как определяют твердость по Бринеллю, Роквеллу и Виккерсу?

18. Запишите единицы измерения твердости по Бринеллю, Роквеллу и Виккерсу.

19. Какие методы испытаний механических свойств относят к статическим, динамическим и циклическим?

20. Изобразите первичную диаграмму растяжения для пластичного материала.

21. Как по диаграмме растяжения определить предел прочности и предел текучести?

22. Какие типы образцов используют для нахождения относительного удлинения и относительного сужения?

23. Какие характеристики определяют при испытании на сжатие и на изгиб?

24. Какие характеристики вычисляют при испытании на ударный изгиб?

25. Чем различается ударная вязкость, обозначаемая КСU, КСV, КСТ?

<== предыдущая лекция | следующая лекция ==>
Физические, химические и эксплуатационные свойства материалов | Демаскирующие признаки объектов защиты
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 4274; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.