Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аварії на транспорті 6 страница




Найвагомішим з усіх природних джерел радіації є невидимий важкий газ радон (у 7,5 раза важчий за повітря), який не має смаку та запаху. Радон і продукти його розпаду випромінюють приблизно 3/4 річної індивідуальної ефективної еквівалентної дози опромінювання, отримуваної населенням від земних джерел, і приблизно за половину цієї дози від усіх джерел радіації. У будівлі радон надходить із природним газом (3 Кбк/добу), з водою 94), із зовнішнім повітрям (10), із будматеріалів та грунту під будівлею (60 Кбк/добу).

За останні десятиріччя людина створила більше тисячі штучних радіонуклідів і навчилася застосовувати їх з різною метою. Значення індивідуальних доз, отримуваних людьми від штучних джерел, сильно різняться.

3.2.4.6. Вимірювання іонізуючих випромінювань

Необхідно пам’ятати, що не існує універсальних методів та приладів, які можна застосовувати за будь-яких умов. Кожен метод та прилад має свою область застосування. Неурахування цих застережень може призвести до грубих помилок. У радіаційній безпеці використовують радіометри, дозиметри та спектрометри.

Радіометри ¾ це прилади, призначені для визначення якості радіоактивних речовин (радіонуклідів) або потоку випромінювання. Наприклад, газорозрядні лічильники (Гейгера - Мюллера).

Дозиметри ¾ це прилади для вимірювання потужності експозе­ційної або поглинутої дози.

Спектрометри використовують для реєстрації й аналізу енергетик­ного спектра і поглинутої дози, а також ідентифікації на цій основі випромінюючих радіонуклідів.

Принцип дії будь-якого приладу, призначеного для реєстрації проникаючих випромінювань, полягає у вимірюванні ефектів, що виникають у процесі взаємодії випромінювання з речовиною. Найпоширенішим є іонізаційний метод реєстрації, що грунтується на вимірюванні безпосереднього ефекту взаємодії випромінювання з речовиною, тобто ступеню іонізації середовища, через яке пройшло випромінювання.

Для вимірів застосовують іонізаційні камери або лічильники, що слугують датчиком, і схеми реєстрації, що містять чутливі елементи. Іонізаційна камера являє собою конденсатор, що складається з двох електродів між якими міститься газ.

Електричне поле між електродами створюється від зовнішнього джерела. За відсутності радіоактивного джерела іонізації в камері не відбувається і вимірювальний прилад струму показує на нуль. Під дією іонізуючого випромінювання в газі камери виникають позитивні та негативні іони. Під дією електричного поля негативні іони рухаються до позитивно зарядженого електрода, позитивні до негативно зарядженого електрода. У колі виникає струм, який реєструється вимірювальним приладом. Іонізаційні камери звичайно працюють в режимі струму насичення, при якому кожний акт іоні­зації дає складову струму. За струмом насичення визначаються інтен­сивність випромінювання та якість даної радіоактивної речовини.

Сцинтиляційний метод реєстрації випромінювань грунтується на вимірюванні інтенсивності світлових спалахів, що виникають у люмінесцентних речовинах при проходженні крізь них іонізуючих випромінювань. Для реєстрації світлових спалахів використовують фотоелектронний помножувач (ФЕП) із електронною схемою реєстрації. Речовини, що випромінюють світло під дією іонізуючого випромінювання, називаються сцинтиляторами (фосфорами, флуорами, люмінофорами).

ФЕП дає змогу перетворювати слабкі спалахи від сцинтилятора в достатньо великі електричні імпульси, які можна зареєструвати звичайною нескладною електронною апаратурою.

Сцинтиляційні лічильники можна застосовувати для вимірювання кількості заряджених частинок, гамма-квантів, швидких та повільних нейтронів; для вимірювання потужності дози від бета -, гамма - та нейтронного випромінювань; для дослідження спектрів гамма - та нейтронного випромінювань.

Сцинтиляційний метод має ряд переваг перед іншими методами, насамперед це висока ефективність вимірювання проникаючих випромінювань, малий час висвітлювання сцинтиляторів, що дає змогу виконувати вимірювання з ізотопами, які мають короткий період життя.

За допомогою фотографічного методу були отримані перші відомості про іонізуючі випромінювання радіоактивних речовин. Під час дії випромінювання на фотографічну плівку або пластинку в результаті іонізації у фотоемульсії відбуваються фотохімічні процеси, внаслідок яких після проявлення виділяється металічне срібло у тих місцях, де відбулося поглинання випромінювання. Здатність фотоемульсії реєструвати випромінювання, перетворене різними фільтрами, дає змогу отримувати докладні відомості про кількість вимірюваного випромінювання.

Хімічно оброблена плівка має прозорі та почорнілі місця, які відповідають незасвіченим та засвіченим ділянкам фотоемульсії. Використовуючи цей ефект для дозиметрії, можна встановити зв’язок між ступенем почорніння плівки та поглинутою дозою. Нині цей метод використовується лише для індивідуального контролю дози рентгенівського, гамма -, бета - і нейтронного випромінювань.

Описані вище методи реєстрації випромінювань дуже чутливі і непридатні для вимірювання великих доз. Найзручнішими для цієї мети виявилися різні хімічні системи, у яких під дією випроміню­вання відбуваються ті, або інші зміни, наприклад, офарблення розчинів і твердих тіл, осадження колоїдів, виділення газів із сполук. Для вимірювання великих доз застосовують різне скло, яке змінює свій колір під дією випромінювання.

Для вимірювання досить великих потужностей дози застосовують калориметричні методи, в основі яких лежить зміна кількості тепла, виділеного у речовині, що поглинає радіацію.

Калориметричні методи застосовують для градуювання простіших методів визначення поглинутих доз, а також для визначення сумісного та роздільного гамма -, та нейтронного випромінювань у ядерних реакторах, прискорювачах, де потужність поглинутої дози складає кілька десятків рад на годину.

Великого поширення набули напівпровідникові, а також фото -, та термолюмінесцентні детектори іонізуючих випромінювань, що увійшли в практику протягом останнього десятиріччя.

3.2.4.7. Нормування радіаційної безпеки

Питання радіаційної безпеки регламентуються законом «Про радіаційну безпеку населення», нормами радіаційної безпеки (НРБ-96) та іншими правилами та постановами.

Усі громадяни і особи без громадянства, що проживають на території України мають право на радіаційну безпеку. Це право забезпечується за рахунок проведення комплексу заходів щодо запобігання радіаційної дії на організм людини іонізуючого випромінювання вище встановлених норм та правил, нормативів, виконання громадянами й організаціями, що здійснюють діяльність із використанням джерел іонізуючого випромінювання, вимог до забезпечення радіаційної безпеки.

Вимоги НРБ-96 є обов’язковими для всіх юридичних осіб. Ці норми є основним документом, що регламентує вимоги радіаційної безпеки і застосовується за всіх умов дії на людину радіації штучного та природного походження.

У НРБ-96 приведені терміни та визначення. Так, в нормах сказано, що радіаційний ризик ¾ це імовірність того, що у людини в результаті опромінювання виникає який-небудь конкретний шкідливий ефект.

Норми встановлюють наступні категорії осіб, що зазнають опромінення: персонал та все населення. Персонал - особи, що працюють з технічними джерелами (група А або ті особи, що перебувають за умовами роботи у сфері дії технічних джерел (груба Б). Границя індивідуального ризику для техногенного опромінювання осіб із персоналу приймається такою, що дорівнює 1 × 10-3 на рік, для населення 5,0×10-5 на рік. Рівень ризику, яким можна знехтувати, приймається таким, що дорівнює 10-6 на рік.

Для категорій осіб, що зазнають опромінювання, встановлюються три класи нормативів:

¨ основні границі дози, приведені в таблиці 3.6.

Т а б л и ц я 3.6. Допустимі рівні опромінювання людини

Нормовані величини Границі дози
особи з персоналу (група А) особи з населення
Ефективна доза 20 мЗв на рік в середньому за будь-які послідовні 5 років, але не більше 50 мЗв на рік 1 мЗв на рік в середньому за будь-які послідовні 5 років але не більше 5 мЗв на рік
Еквівалентна доза за рік у кришталику, шкірі, кистях та стопах 150 мЗв 500 мЗв 500 мЗв 15 мЗв 50 мЗв 50 мЗв

¨ допустимі рівні монофакторної (для одного радіонукліда або одного виду зовнішнього випромінювання, шляхи надходження) дії, що є похідними від основних границь дози: границі річного надходження, допустимі середньорічні об’ємні активності (ДОА) та питомі активності (ДПА) тощо;

¨ контрольні рівні (дози та рівні). Контрольні рівні встановлюються адміністрацією установи за узгодженням із органами Державного санітарного епідеміологічного нагляду. Їх чисельні значення повинні враховувати досягнутий в установі рівень радіаційної безпеки та забезпечувати умови, за яких радіаційна дія буде нижча допустимої.

Основні границі дози опромінення осіб із персоналу та населення не включають дози від природних, медичних джерел іонізуючого випромінювання та дозу, отриману внаслідок радіаційних аварій. На ці види опромінювання встановлюються спеціальні обмеження.

При підрахунку внеску у загальне (зовнішнє та внутрішнє) опромінювання від надходження в організм радіонуклідів береться сума добутків надходжень кожного радіонукліда за рік на його коефіцієнт дози. Річна ефективна доза опромінення дорівнює сумі ефективної дози зовнішнього опромінювання, накопиченої за календарний рік, та очікуваної ефективної дози внутрішнього опромінювання, що обумовлена надходженням в організм радіонуклідів за цей самий період. Інтервал часу для визначення величини очікуваної ефективної дози встановлюється таким, що дорівнює 50 років для осіб з персоналу та 70 років - для осіб з населення.

Для кожної категорії осіб, які зазнають опромінювання, допустиме річне надходження радіонукліда розраховується шляхом поділу річної границі дози на відповідний коефіцієнт дози.

3.2.4.8. Захист від випромінювань

Дозу випромінювання (Р) на робочому місці можна вирахувати за формулою:

d = ,

де d ¾ активність джерела, мКі; Kg - гамма ¾ стала ізотопа, яка береться з таблиць; t ¾ час опромінювання, год; R ¾ відстань, см.

Із цієї формули випливає, що для захисту від g-випромінювання існує три методи: захист часом, відстанню та екрануванням.

Захист часом полягає в тому, щоб обмежити час t перебування в умовах опромінення та не допустити перевищення допустимої дози.

Захист відстанню грунтується на наступних фізичних засадах. Випромінювання точкового або локалізованого джерела поширюється у всі сторони рівномірно, тобто є ізотропним. Звідси випливає, що інтенсивність випромінювання зменшується із збільшенням відстані R до джерела за законом обернених квадратів.

Принцип екранування або поглинання грунтується на використанні процесів взаємодії фотонів із речовиною. Якщо задані тривалість роботи, активність джерела та відстань до нього, а потужність дози Р0 на робочому місці оператора виявляється вище допустимої РД, немає іншого шляху, крім того, як зменшити значення Р0 у необхідне число разів: n = Р0/РД, помістивши між джерелом випромінювання та оператором захист із речовини, що поглинає радіацію.

Захисні властивості матеріалів оцінюються за коефіцієнтом ослаблення. Наприклад, для половинного ослаблення потоків фотонів з енергією 1 меВ необхідний шар свинцю в 1,3 см або 13 см бетону. Це «еталонні» матеріали. Захисна здатність інших речовин більша або менша у стільки разів, у скільки відрізняється їх густина від густини свинцю та бетону. Чим легша речовина, тим більше її потрібно для захисту. Знаючи необхідну кратність ослаблення n випромінювання, легко визначити відповідне їй число m шарів половинного ослаблення, при якому потужність дози Р буде зменшена до допустимої Рд:

n = 2m; lg n = 0,3 m; m = lg n/0,3

Безпечність роботи з радіоактивними речовинами та джерелами випромінювань передбачає науково обгрунтовану організацію праці. Адміністрація підприємства зобов’язана розробити детальні інструкції, у яких викладені: порядок проведення робіт; обліку, зберігання та видачі джерел випромінювання; збирання та видалення радіоактивних відходів; утримання приміщень; заходи особистої профілактики; організація та порядок проведення радіаційного (дозиметричного) контролю. Усі працівники повинні бути ознайомлені з цими інструкціями, навчені безпечним методам роботи і зобов’язані скласти відповідний техмінімум. Усі працівники, що влаштовуються на роботу повинні проходити попередній, а потім також періодичні медичні огляди.

Слід відзначити, що організм беззахисний у полі випромінювання. Існують механізми пострадіаційного відновлення живих структур. Тому до певних меж опромінення не викликає шкідливих змін у біологічних тканинах. Якщо допустимі границі перевищені, то необхідна підтримка організму (посилене харчування, вітаміни, фізична культура, сауна тощо). При змінах у кровотворенні застосовують переливання крові. При дозах, що загрожують життю (600 ¾ 1000 бер) використовують пересадку кісткового мозку. При внутрішньому переопроміненні для поглинання або зв’язування радіонуклідів у сполуки, що перешкоджають їх відкладанню в органах людини, вводять сорбенти або речовини, які утворюють комплекси.

До технічних засобів захисту від іонізуючих випромінювань відносяться екрани різних конструкцій. У якості ЗІЗ застосовують халати, комбінезони, плівковий одяг, рукавиці, пневматичні костюми, респіратори, протигази. Для захисту очей застосовуються окуляри. Весь персонал повинен мати індивідуальні дозиметри.

Зберігання, облік, транспортування та поховання радіоактивних речовин повинно здійснюватися у суворій відповідності з правилами.

Для захисту від шкідливих дій речовин застосовують радіопротектори.

Протектори ¾ це лікарські препарати, що підвищують стійкість організму до дії шкідливих речовин або фізичних факторів. Найбільшого поширення набули радіопротектори, тобто лікарські засоби, що підвищують захищеність організму від іонізуючих випромінювань або такі, що зменшують важкість клінічного перебігу променевої хвороби.

Радіопротектори діють ефективно, якщо вони введені в організм перед опроміненням і присутні в ньому у момент опромінення. Наприклад, відомо, що йод накопичується у щитоподібної залозі. Тому, якщо є небезпека попадання в організм радіоактивного йоду І131, то завчасно вводять йодистий калій або стабільний йод. Накопичуючись у щитоподібній залозі, ці нерадіоактивні різновиди йоду перешкоджають відкладанню в ній небезпечного у радіоактивному відношенні І131. Захисний ефект, що оцінюється так званим фактором захисту (ФЗ) залежить від часу прийому стабільного йоду відносно початку попадання радіоактивної речовини (РР) в організм. При введенні йоду за 6 год до контакту з РР фактор захисту ФЗ = 100 разів. Якщо час контакту з РВ та час приймання йоду співпадають, ФЗ = 90 разів. При введенні йоду через 2 год після початку контакту, то ФЗ = 10 разів. Якщо йод вводиться через 6 годин, ФЗ = 2. Для захисту від стронцію Cs137, що проникає у кісткову тканину, рекомендується вживати продукти, що містять кальцій (квасоля, гречка, капуста, молоко).

Радіопротектори, що зменшують ефект опромінювання, виготовлені у вигляді спеціальних препаратів. Наприклад, препарат РС-1 є радіопротектором швидкої дії. Захисний ефект настає через 40-60 хв і зберігається на протягом 4¾6 год. Препарат Б-190 ¾ радіопротектор екстреної дії, радіозахисний ефект якого настає через 5 ¾ 15 хв і зберігається протягом години.

Препарат РДД-77 ¾ радіопротектор тривалої дії, захисний ефект якого настає через 2 доби і зберігається 10 ¾ 12 діб.

Існує багато інших радіопротекторів, що мають різний механізм дії.

Захист від іонізуючих випромінювань являє дуже серйозну проблему і вимагає об’єднання зусиль вчених і спеціалістів не тільки в національних рамках, а й в міжнародному масштабі. У кінці 20-х років була створена Міжнародна комісія з радіаційного захисту (МКРЗ), яка розробляє правила роботи з радіоактивними речовинами. В Україні є відповідна національна комісія.

Світова громадськість стала виявляти підвищену тривогу з приводу дії іонізуючих випромінювань на людину і навколишнє середовище з початку 50-х років. Це було пов’язано з наслідками бомбардування Хіросіми та Нагасакі, а також з випробуваннями ядерної зброї, які призвели до поширення радіоактивного матеріалу по всій Земній кулі.

Знань про вплив радіоактивних опадів на біологічні об’єкти було ще не досить, і Генеральна Асамблея ООН У 1955р. заснувала Науковий Комітет з дії атомної радіації (НКДАР) для оцінки у світовому масштабі доз опромінювання, їх ефекту та пов’язаного з ними ризику. Серед небезпек, які загрожують людині, небагато привертають до себе постійну увагу громадськості і викликають так багато суперечок як проблема радіації. Особливо багато дискусій та акцій протесту виникають з приводу атомної енергетики. Стан тривоги різко загострився після аварії на ЧАЄС 26 квітня 1986 р.

ООН у 1957 р. створила спеціальну організацію ¾ Міжнародне агентство з атомної енергії (МАГАТЕ), яка займається проблемами міжнародного співробітництва у галузі світового використання атомної енергії. Один з основних напрямів діяльності МАГАТЕ ¾ проблема безпеки атомних станцій. Експерти МАГАТЕ проводять перевірки і роблять висновки про рівень безпеки конкретних АЕС. Зокрема, МАГАТЕ розробило міжнародну шкалу оцінки небезпеки ядерних аварій.

3.2.5. Електробезпека

Загальні положення. Дія електричного струму на людину носить різноманітний характер. Проходячи через організм людини, електричний струм викликає термічну, електролітичну, а також біологічну дію.

Термічна дія струму проявляється в опіках деяких окремих
ділянок тіла, нагріванні кровоносних судин, нервів, крові тощо.

Електролітична дія струму проявляється у розкладі крові та інших органічних рідин організму і викликає значні порушення фізико-хімічного складу.

Біологічна дія струму проявляється як подразнення та збудження живих тканин організму, що супроводжується мимовільними судомними скороченнями м’язів, у тому числі легенів та серця. В результаті можуть виникнути різні порушення і навіть повне припинення діяльності органів кровообігу та дихання.

Ця різноманітність дій електричного струму може призвести до двох видів ураження: до електричних травм та електричних ударів.

Електричні травми являють собою чітко виражені місцеві пошкодження тканин організму, викликані дією електричного струму або електричної дуги. У більшості випадків електротравми виліковні, але іноді при важких опіках травми можуть призвести до загибелі людин. Розрізняють такі електричні травми: електричні опіки, електричні знаки, металізація шкіри, електроофтальмологія та механічні пошкодження.

Електричний опік ¾ найпоширеніша електротравма. Опіки бувають двох видів: опіки струмом (або контактний) та дугові. Опік струмом обумовлений проходженням струму крізь тіло людини в результаті контакту із струмоведучою частиною і є наслідком перетворення електричної енергії у теплову. Розрізняють чотири ступеня опіків: І ¾ почервоніння шкіри; ІІ ¾ утворення пухирів; ІІІ ¾ змертвіння всієї товщі шкіри; ІV ¾ обвуглювання тканин. Важкість ураження організму обумовлюється не ступенем опіку, а площею обпеченої поверхні тіла. Опіки струмом виникають при напругах не вище 1-2 кВ і є у більшості випадків опіками І та ІІ ступеня; іноді бувають і важкі опіки. За більш вищої напруги між струмоведучою частиною та тілом людини утворюється електрична дуга (температура дуги вище 3500 0С і в неї дуже велика енергія), яка спричиняє дуговий опік. Дугові опіки, як правило, важкі ¾ ІІІ та ІV ступеня.

Електричні знаки ¾ чітко окреслені плями сірого або блакитно-жовтого кольору на поверхні шкіри людини, що зазнала дії струму. Знаки бувають також у вигляді подряпин, ран, порізів або забитих місць, бородавок, крововиливів у шкіру та мозолів. У більшості випадків електричні знаки безболісні і лікування їх закінчується добре.

Металізація шкіри ¾ це проникнення у верхні шари шкіри найдрібніших часток металу, що розплавився під дією електричної дуги. Це може статися при коротких замиканнях, вимиканнях рубильників під навантаженням тощо. Металізація супроводжується опіком шкіри, який викликається нагрітим металом.

Електроофтальмологія ¾ ураження очей, викликане інтенсивним випромінюванням електричної дуги, спектр якої містить шкідливі для очей ультрафіолетові та ультрачервоні промені. Крім того, можливе попадання в очі бризок розплавленого металу. Захист від електроофтальмології досягається носінням захисних окулярів, які не пропускають ультрафіолетових променів, і забезпечують захист очей від бризок розплавленого металу.

Механічні пошкодження виникають у результаті різких неправильних судомних скорочень м’язів під дією струму, що проходить крізь тіло людини. В результаті можуть статися розриви шкіри, кровоносних судин та нервової тканини, а також вивихи суглобів і навіть переломи кісток. До цього ж виду травм потрібно віднести забиті місця, травми, викликані падінням людини з висоти, ударами об предмети в результаті мимовільних рухів або втрати свідомості через дію струму. Механічні пошкодження є, як правило, серйозними травмами, що вимагають тривалого лікування.

Електричний удар. Це збудження живих тканин організму електричним струмом, що проходить крізь нього, яке супровод­жується мимовільними судомними скороченнями м’язів. Залежно від наслідку дії струму на організм електричні удари умовно поділяються на наступні чотири ступеня:

І ¾ судомне скорочення м’язів без втрати свідомості;

ІІ ¾ судомне скорочення м’язів, втрата свідомості, але збереження дихання та роботи серця;

ІІІ ¾ втрата свідомості та порушення серцевої діяльності чи дихання (або всього разом);

ІV ¾ клінічна смерть, тобто відсутність дихання та кровообігу.

Причинами смерті в результаті ураження електричним струмом можуть бути: припинення роботи серця, припинення дихання та електричний шок. Припинення роботи серця, як наслідок дії струму на м’яз серця, найнебезпечніше. Ця дія струму може бути прямою, коли струм протікає крізь область серця, і рефлекторною, коли струм проходить по центральній нервовій системі. В обох випадках може статися зупинка серця або настане його фібриляція (безладне скорочення м’язових волокон серця фібрил), що призведе до припинення кровообігу.

Припинення дихання може бути викликане прямою або рефлекторною дією струму на м’язи грудної клітки, що беруть участь у процесі дихання. За тривалої дії струму настає, так звана асфіксія (ядуха) ¾ хворобливий стан в результаті нестачі кисню та надлишку діоксиду карбону в організмі. Під час асфіксії втрачається свідомість, чутливість, рефлекси, потім припиняється дихання і, насамкінець, зупиняється серце ¾ настає клінічна смерть.

Електричний струм ¾ своєрідна важка нервово-рефлекторна реакція організму на сильне подразнення електричним струмом, яке супроводжується глибоким розладом кровообігу, дихання, обміну речовин тощо. Шоковий стан триває від кількох десятків секунд до кількох діб. Після цього може настати повне одужання як результат своєчасного лікувального втручання або загибель організму через повне згасання життєво важливих функцій.

Фактори, що визначають небезпеку ураження електричним струмом. Характер та наслідки дії на людину електричного струму залежать від наступних факторів: електричного опору людини; величини напруги та струму; тривалості дії електричного струму; шляху струму крізь тіло людини; роду та частоти електричного струму; умов зовнішнього середовища.

Електричний опір тіла людини. Тіло людини є провідником електричного струму, однак неоднорідним за електричним опором. Найбільший опір електричному струму справляє шкіра, тому опір тіла людини визначається, головним чином, опором шкіри.

Шкіра складається з двох основних шарів: зовнішнього ¾ епідермісу та внутрішнього ¾ дерми. Зовнішній шар ¾ епідерма, у свою чергу має кілька шарів, з яких самий товстий верхній шар називається роговим. Роговий шар в сухому та незабрудненому стані можна розглядати як діелектрик: його питомий об’ємний опір досягає 105 - 106 Ом×м, що в тисячі разів перевищує опір інших шарів шкіри - дерми. Опір дерми незначний: він у багато разів менший опору рогового шару. Опір тіла людини при сухій, чистій та непошкодженій шкірі (виміряний при напрузі 15¾20 В) коливається від 3 до 100 кОм і більше, а опір внутрішніх шарів тіла складає усього 300-500 Ом. Внутрішній опір тіла вважається активним. Його величина залежить від довжини та поперечного розміру ділянки тіла, по якій проходить струм. Зовнішній опір тіла складається наче з двох паралельно включених опорів: активного та ємнісного. На практиці звичайно нехтують ємнісним опором, який має невелике значення, і вважають опір тіла людини активним і незмінним. За розрахункову величину при змінному струмі промислової частоти приймають активний опір тіла людини, що дорівнює 1000 Ом.

У реальних умовах опір тіла людини не є сталою величиною. Він залежить від ряду факторів, у тому числі від стану шкіри, стану навколишнього середовища, параметрів електричного кола тощо. Пошкодження рогового шару (порізи, подряпини, садна тощо) зменшують опір тіла до 500¾700 Ом, що збільшує небезпеку ураження людини струмом. Такий самий вплив справляє зволоження шкіри водою або потом. Таким чином, робота із електрообладнанням вологими руками або в умовах, що викликають зволоження шкіри, а також при підвищеній температурі, яка викликає посилене виділення поту, підвищує небезпеку ураження людини струмом. Забруднення шкіри шкідливими речовинами, які добре проводять електричний струм (пил, окалина тощо), призводить до зменшення її опору.

На опір тіла справляє вплив площа контактів, а також місце доторкання, тому що у однієї й тієї самої людини опір шкіри неоднаковий на різних ділянках тіла. Найменший опір має шкіра обличчя, шиї, рук на ділянці вище долоні та особливо на тому їх боці, що повернутий до тулуба, під пахвами, на тильному боці кисті тощо. Шкіра долоні та підошов має опір, що у багато разів перевищує опір шкіри інших ділянок шкіри.

Із збільшенням струму та часу його проходження опір тіла людини падає, тому що при цьому посилюється місцеве нагрівання шкіри, що призводить до розширення її судин, до посилення постачання цієї ділянки кров’ю та до збільшення виділення поту. Із зростанням напруги, що прикладається до тіла людини, опір шкіри зменшується в десятки разів, наближаючись до опору внутрішніх тканин (300-500 Ом) Це пояснюється електричним пробоєм рогового шару шкіри, збільшенням струму, що проходить крізь шкіру. Із збільшенням частоти струму опір тіла буде зменшуватися і при 10-20 кГц зовнішній шар шкіри практично втрачає опір електричному струму.

Величина струму та напруга. Основним фактором, що обумовлює результат ураження електричним струмом, є сила струму, що проходить крізь тіло людини. Напруга, прикладена до тіла людини, також впливає на результат ураження, але лише настільки, наскільки вона визначає значення струму, який проходить крізь людину.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 507; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.