Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Способы возбуждения машин постоянного тока

 

Возбуждение - это понятие, связанное с созданием основного магнитного поля машины. В машинах с электромагнитным возбуждением основное поле создается обмотками возбуждения. Имеются конструкции, в которых возбуждение создается постоянными магнитами, размещенными на статоре. Различают четыре схемы включения статорных обмоток: с независимым, параллельным, последовательным и смешанным возбуждением (рис. 7.2.1).

Изображения под пунктами б, в, г на рис. 7.2.1, называются схемами с самовозбуждением. Процесс самовозбуждения происходит за счет остаточной намагниченности полюсов и станины. При вращении якоря в этом, небольшом по величине, магнитном поле (ФОСТ = 0,02 0,03 ФО) индуцируется ЭДС - ЕОСТ.
Поскольку обмотка возбуждения подключена через щетки к якорю, то в ней будет протекать ток. Этот ток усилит магнитное поде полюсов и приведет к увеличению ЭДС якоря. Большая ЭДС вновь увеличит ток возбуждения и произойдет нарастание магнитного потока до полного намагничивания машины.

7.3. ОБМОТКИ ЯКОРЯ МАШИНЫ ПОСТОЯННОГО ТОКА

Для работы машины постоянного тока необходимо наличие двух обмоток; обмотки возбуждения и обмотки якоря. Первая, как известно, служит для создания в машине основного магнитного потока, а во второй происходит преобразование энергии.
Обмотка якоря является замкнутой системой проводников, уложенных в пазах.
Элементом якорной обмотки является секция, которая может быть одно - или много витковой. Секция состоит из активных сторон и лобовых частей. При вращении якоря, в каждой из активных сторон индуцируется ЭДС, величина которой равна:

т.е. она зависит от магнитной индукции полюсов ВСР, длины проводника L и скорости его движения V. В реальной машине, будь она генератором или двигателем, в наведении ЭДС участвуют все проводники обмотки якоря.
Величина суммарной ЭДС:

где n - скорость вращения якоря (ротора), об/мин;
Ф - магнитный поток полюсов;
Се - постоянный коэффициент, зависящий от количества витков в секции.
Обмотка якоря может быть петлевой и волновой. Петлевая обмотка, если ее изобразить в развернутом виде, имеет следующий вид (рис. 7.3.1):

Расстояние между активными сторонами одной секции называется первым шагом обмотки - y1. Расстояние между началом второй секции и концом первой называется вторым шагом обмотки - у2. Расстояние между, началами секций, следующих друг за другом, называется результирующим шагом - у. Шаги обмотки определяются числом пазов.
Расстояние между коллекторными пластинами, куда припаиваются начало и конец, принадлежащие одной секции, называется шагом по коллектору - ук. В петлевой обмотке ук= 1. Шаг ук определяется числом коллекторных пластин.
Развернутая волновая обмотка имеет вид: (рис. 7.3.2).

Форма волновой обмотки отлична от петлевой и, следовательно, будет иное соединение секций.
Однако шаги волновой обмотки имеют общее с петлевой определение.
Шаг по коллектору здесь значительно больше единицы (ук >> 1).

7.4. ЭДС И ЭЛЕКТРОМАГНИТНЫЙ МОМЕНТ ГЕНЕРАТОРА
ПОСТОЯННОГО ТОКА

Как уже отмечалось, ЭДС, наведенная в обмотке вращающегося якоря генератора, пропорциональна магнитному потоку полюсов и частоте его вращения:

Магнитный поток в генераторе, как известно, создается током возбуждения Iв.
Если вращать якорь c постоянной частотой n и непрерывно измерять выходную ЭДС Е, то можно построить график Е = f (Iв) (рис. 7.4.1).

Эта зависимость называется характеристикой холостого хода. Она строится для режима, когда генератор не имеет внешней нагрузки, т.е. работает вхолостую.
Если подключить к генератору нагрузку, то напряжение на его зажимах будет меньше E на величину падения напряжения в цепи якоря:

Здесь: U - напряжение на зажимах;
Е - ЭДС в режиме х.х.;
IЯ - ток якоря;
RЯ - сопротивление в цепи якоря.
Падение напряжения в цепи якоря обычно не превышает 2-8 % ЭДС генератора.
Уменьшение напряжения на выходе генератора связано с размагничиванием машины магнитным полем якоря, а также падением напряжения в его обмотках.
В каждой машине постоянного тока имеет место взаимодействие между током якоря IЯ и магнитным потоком Ф. В результате на каждый проводник обмотки якоря действует электромагнитная сила:

где В - магнитная индукция,
IЯ - ток в обмотке якоря,
L - длина якоря.
Направление действия этой силы определяется правилом левой руки.
Подставим сюда среднее значение магнитной индукции ВСР и величину тока в каждом проводнике обмотки якоря I = IЯ / 2 а.
Получим

Электромагнитный момент, действующий на якорь машины, при числе проводников обмотки N:

где - величина, постоянная для данной машины;
d - диаметр якоря;
р - число пар полюсов;
N - число проводников обмотки якоря;
а - число пар параллельных ветвей.
При работе машины в режиме генератора электромагнитный момент действует против вращения якоря, т.е. является тормозным.
Для привода генератора требуется электродвигатель мощность, которого должна покрыть все потери в генераторе:

где Р - полезная электрическая мощность генератора;
DРЯ - потери в обмотке якоря;
DРВ - потери в обмотке возбуждения;
DРМ - потери на намагничивание машины;
DРМЕХ - механические потери, связанные с трением вращающихся частей.

Коэффициент полезного действия генератора определяется отношением:

У современных генераторов постоянного тока коэффициент полезного действия составляет 90-92 %.

7.5. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

В соответствии с принципом обратимости машина постоянного тока может работать как в качестве генератора, так и в качестве двигателя. Уравнение ЭДС для двигателя составлено на основании 2-го закона Кирхгофа с учетом направления ЭДС:

откуда

Ток в цепи якоря:

В соответствии о формулой Еа = Се Ф n частота вращения определяется выражением:

Подставим значение Е из уравнения U = Е - IЯ RЯ, получим:

т.е. частота вращения двигателя прямо пропорциональна подведенному напряжению и обратно пропорциональна магнитному потоку возбуждения.
Из этой формулы видно, что возможны пути регулирования частоты вращения двигателя постоянного тока:
1. Изменением напряжения сети U. Регулируя подаваемое напряжение Uсети можно менять частоту вращения.
2. Включением в цепь якоря добавочного сопротивлению (R'Я = RЯ + RДОБ). Изменяя сопротивление RДОБ, меняют частоту вращения.
3. Изменением магнитного потока Ф. Машины с постоянными магнитами не регулируются. Машины с электромагнитами позволяют регулировать поток Ф путем изменения тока возбуждения IB.
На рис. 7.5.1. показана схема включения в сеть двигателя постоянного тока.

 

По закону электромагнитной индукции при прохождении тока по обмотке якоря происходит взаимодействие ее проводников с магнитным полем полюсов. На каждый проводник обмотки будет действовать электромагнитная сила Рэм = ВСРLI, пропорциональная магнитной индукции полюсов В, длине проводника L и току I, протекающему по проводнику.
Направление действия этой силы определяется правилом правой руки.
Не повторяя рассуждений, проведенных для генератора постоянного тока, запишем выражение для вращающего момента:

M=CMФ IЯ

где CM - коэффициент пропорциональности.
Вращающий момент у двигателей с независимым и параллельным возбуждением с увеличением нагрузки может как расти, так и уменьшаться, поскольку с ростом потребляемого тока I и размагничивания полюсов, уменьшается магнитный поток Ф.

Двигатели с последовательным возбуждением имеют отличные от вышеприведенных двигателей характеристики.
Из схемы, приведенной на рис. 7.2.1 в, видно, что магнитный поток в машине создается обмоткой возбуждения, включенной последовательно с обмоткой якоря. Следовательно, IB = IЯ и выражение для вращающего момента будет иметь вид:

Последняя формула показывает, что чем больше нагрузка на двигатель, тем большим будет вращающий момент. Это обстоятельство делает двигатель с последовательным возбуждением незаменимым на электротранспорте (трамвае, троллейбусе и т.д.).
Реверсирование или изменение направления вращения двигателей постоянного тока может осуществляться изменением полярности тока либо в обмотке якоря, либо в обмотке возбуждения.

Лекция13,14

Асинхронные машины
Устройство и основные элементы конструкции
Основными частями машины являются статор и ротор. Их сердечники собираются из листов электротехнической стали (рис. 3-1), которые до сборки обычно покрываются с обеих сторон специальным лаком. Рис. 3-1. Листы сердечников статора (1) и ротора (2). Тем самым предотвращается образование больших вихревых токов в стали сердечников. Иногда для небольших двигателей их сердечники собирают из листов без покрытия последних лаком, так как окалина на внешних поверхностях листов создает достаточную изоляцию между ними. На рис. 3-1 показаны листы, из которых собираются статор и ротор машин небольшой и средней мощностей. Они обычно штампуются при помощи штампа, позволяющего одним ударом получить необходимую форму листа со всеми отверстиями. Отверстия на внутренней окружности листов статора и на внешней окружности листов ротора после сборки их образуют пазы статора и ротора, в которые закладываются проводники обмоток. На рис. 3-2 и 3-3 показаны в разобранном виде двигатели — короткозамкнутый и с контактными кольцами. Рис. 3-2. Асинхронный двигатель короткозамкнутым ротором в разобранном виде. а — статор; 6 — ротор; в — подшипниковые щиты; г — вентилятор; д — отверстия для входа и выхода охлаждающего воздуха; е — коробка, прикрывающая зажимы. Рис. 3-3. Асинхронный двигатель с контактными кольцами в разобранном виде. а — статор; 6 — ротор; в — подшипниковые щиты; г — вентилятор; д — отверстия для входа и выхода охлаждающего воздуха; е — коробка, прикрывающая зажимы; ж — контактные кольца, з —щеткодержатели и щетки.
Устройство и основные элементы конструкции  
Сердечник статора помещается в корпусе, который служит его внешней частью. Сердечник ротора укрепляется непосредственно на валу двигателя или на втулке (в форме крестовины), надетой на вал двигателя. Вал вращается в подшипниках, укрепленных в боковых щитах, называемых подшипниковыми щитами. Машины мощностью до 500—600 кВт (иногда и выше) снабжаются подшипниками качения (шариковыми и роликовыми), при большей мощности — подшипниками скольжения. При внешнем диаметре сердечника статора свыше 1 м обычно применяют стояковые подшипники (рис. 3-4). Рис. 3-4. Асинхронный двигатель большой мощности со стояковыми подшипниками. Подшипниковые щиты прикрепляются к корпусу статора при помощи болтов или шпилек. Щиты и корпус статора обычно выполняются литыми из чугуна. Для малых машин их часто выполняют литыми из сплава с большим содержанием алюминия, что уменьшает вес машины.
Обмотки статора и ротора и наведение в них э.д.с.  
Обмотки и сердечники статора и ротора являются основными частями электрической машины. Они и создают в ней условия для электромагнитных процессов, протекающих при преобразовании электрической энергии в механическую или при обратном преобразовании. Рассмотрим вначале обмотки статора. Они одинаковы как у асинхронных, так и у синхронных машин. Обмотки состоят из витков, заложенных в пазы статора и соединенных между собой по особым правилам. а) Электродвижущая сила витка. На рис. 3-5, а показаны статор и один виток его обмотки. Стороны витка, уложенные в пазы, представляют собой его активные части. Часть витка, находящаяся вне пазов статора, называется лобовой частью или лобовым соединением. Рис. 3-5. Статор одним витком и наведение э. д. с. в витке. Пусть внутри статора вращается электромагнит или постоянный магнит с двумя полюсами. При этом мы получаем вращающееся поле; его индукционные линии показаны только в воздушном зазоре между статором и ротором. Примем это поле синусоидальным, т. е. будем считать, что кривая распределения индукции В (ее нормальной составляющей) в воздушном зазоре вдоль внутренней окружности статора представляет собой синусоиду (рис. 3-5, б). Поле, близкое к синусоидальному, удается получить, выбрав надлежащим образом форму очертания полюсного наконечника. При вращении поля в проводниках будут наводиться э.д.с., направления которых для выбранного момента времени найдем по правилу правой руки, учитывая направление перемещения проводника относительно поля. Очевидно, эти э.д.с. при постоянной скорости вращения будут изменяться во времени синусоидально. Поэтому мы их можем изобразить временными векторами и . Электродвижущие силы и сдвинуты по фазе на 180°. Такому сдвигу соответствует расстояние между проводниками, равное полюсному делению t. Полюсным делением называется расстояние между осями соседних полюсов, взятое по внутренней окружности статора. Электродвижущая сила витка равна векторной разности э.д.с. проводников: так как при образовании витка стороны его соединяются встречно — конец одного проводника соединяется с концом другого проводника. При прямом соединении проводников, показанном на рис. 3-5, б пунктиром, э.д.с. витка была бы равна векторной сумме э.д.с. проводников, т. е. в данном случае была бы равна нулю. Ширина витка взята равной t. Она определяет шаг обмотки, который обозначается через у. Обмотки, состоящие из таких витков (при y = t), называются диаметральными или обмотками с полным шагом. Обмотки с витками, ширина которых меньше полюсного деления (у <t), называются хордовыми или обмотками с укороченным шагом.    
Обмотки статора и ротора и наведение в них э.д.с.  
Максимальная э.д.с., наведенная в проводнике, В, равна: (3-1) где В м — максимальная индукция в воздушном зазоре, В·с/см2; l — активная длина проводника, см; v — скорость поля относительно проводника, см/с. Частота наведенной в проводнике э.д.с. при двух полюсах, Гц, равна: где п — частота вращения, об/мин. При числе полюсов, равном 2 р, частота будет в р раз больше: (3-2) так как в этом случае за один оборот ротора мимо проводника пройдут р северных и р южных полюсов. Полюсное деление, см, (3-3) где D — внутренний диаметр статора, см. Частоту v можно представить в виде (3-4) Учитывая полученное равенство, а также соотношение между максимальным и средним значениями индукции (для синусоиды) можно (3-1) переписать в следующем виде: где магнитный поток Фм = В ср/t, В·c. Таким образом, действующее значение э.д.с. в проводнике (3-5) Электродвижущая сила витка при y = t (рис. 3-5, в) (3-6) При у < t э.д.с. витка Е в будет меньше, чем 2 Е, так как в этом случае сдвиг между и будет меньше 180° (рис. 3-5, г). Этот сдвиг теперь равен: (3-7) Поэтому Е в при y < t нужно рассчитывать по формуле (3-8) где ε = 180 —γ. Следовательно, э.д.с. витка (3-9) где (3-10) есть коэффициент укорочения. Он учитывает то, что при у < t э.д.с. проводников, образующих виток, складываются не арифметически, а геометрически: k у < 1 при у < t и ky = 1 при y = t.  
Обмотки статора и ротора и наведение в них э.д.с.  
б) Электродвижущие силы катушки, катушечной группы и фазы обмотки. Если вместо одного витка взять катушку, состоящую из w к витков, то э.д.с. в катушке будет в w к раз больше, чем в одном витке: (3-11) Обмотка статора обычно состоит из катушек, равномерно сдвинутых одна относительно другой по окружности статора. Стороны катушек закладываются в пазы. В паз закладывают или одну катушечную сторону, или. две катушечные стороны одну над другой. В соответствии с этим различают однослойные и двухслойные обмотки. На рис. 3-6 представлен статор двухполюсной машины с трехфазной, однослойной обмоткой. Каждая фаза здесь состоит из трех катушек, образующих катушечную группу. При вращении внутри статора электромагнита с двумя полюсами в катушечных группах будут наводиться э.д.с., сдвинутые по фазе на 120°, так как оси катушечных групп сдвинуты по окружности статора на 2/3t. Рис. 3-6. Трехфазная обмотка статора при 2 р = 2 и q = 3. Общее число пазов на окружное статора обозначается через Z. На полюсное деление приходится Q = Z /(2 p) пазов. Так как на одном полюсном делении расположены три фазные зоны, то на каждую фазную зону приходится пазов: (3-12) где q — число пазов на полюс и фазу. Катушечные стороны, заложенные в пазы, равномерно распределены по окружности статора (рис. 3-6). В соответствии с этим наведенные в них э.д.с. будут сдвинуты по фазе. Соседние катушечные стороны смещены на пазовое деление t с, под которым понимается расстояние между серединами соседних пазов.Так как сдвигу на t соответствует угол 180°, то сдвигу на t c будет соответствовать угол (3-13) Если t измерять числом пазовых делений, то получим пазовых делений (3-14) В этом случае имеем (t c = 1), эл. град: (3-15) Угол α есть угол между векторами э.д.с. соседних катушечных сторон. В двухполюсной машине он соответствует центральному углу, стороны которого опираются на дугу t c (рис 3-6); в многополюсной машине угол α в р раз больше, чем тот же центральный угол. Поэтому различают угол в геометрических градусах (или радианах) и угол в электрических градусах (или радианах). В общем случае один геометрический градус соответствует р эл. град. Вся окружность статора соответствует, следовательно, 360 р эл. град (или 2 р π эл. рад). Построим векторы э.д.с. в катушечных сторонах обмотки, представленной на рис. 3-6, обозначив их соответственно номерам пазов цифрами 1, 2, 3 и т. д. При этом получим векторную диаграмму, показанную на рис. 3-7, а, где сдвиг по фазе э.д.с. катушечных сторон, лежащих в соседних пазах, равен Рис. 3-7. Векторные диаграммы. а — звезда пазовых э.д.с., б — э.д.с. фаз. Эта диаграмма называется звездой пазовых э.д.с. С ее помощью мы можем найти э.д.с. фаз обмотки, как показано на рис. 3-7, б, где векторы э.д.с. взяты в уменьшенном масштабе по сравнению с рис. 3-7, а. Сложение векторов произведено в соответствии с рис. 3-6, при этом учитывалось, что э.д.с. катушек получаются в результате встречного соединения их сторон.Звезда пазовых э.д.с. и построенная с ее помощью диаграмма э.д.с. фаз обмотки позволяют проверить, правильно ли выполнены соединения катушечных сторон и катушек обмотки. Электродвижущие силы фаз должны быть равны и сдвинуты по фазе для трехфазной обмотки на 120° (рис. 3-7, б). Если соблюдены эти условия, то обмотка будет симметричной.  
Обмотки статора и ротора и наведение в них э.д.с.  
д) Обмотки для короткозамкнутых роторов. Такие обмотки, как правило, выполняются в виде беличьих клеток, состоящих из стержней и замыкающих их на торцах колец ( Рис. 3-18. Короткозамкнутая обмотка ротора в виде беличьей клетки В последние годы для машин до 100 кBт они обычно выполняются путем заливки расплавленного алюминия в пазы ротора. При этом одновременно отливаются и короткозамыкающие торцовые кольца вместе с вентиляционными крыльями (рис. 3-19). Рис. 3-19. Алюминиевая короткозамкнутая обмотка ротора. Пазы ротора показаны на Рис. 3-20. Пазы ротора.    
       

 
 

 
<== предыдущая лекция | следующая лекция ==>
Лекциия 9,10 Исследование однофазного трансформатора | Стабилитрон
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 3178; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.