Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фазовий склад води , що мігрує у грунтах




Питання про фазовий склад води, що пересувається в зону промерзання, є одним із найголовніших при аналізі влагонакопления в грунтах і його розрахунках. У залежності від того, у якому виде—жидком або парообразном—перемещается вода, вирішується питання і про засоби боротьби з влагонакоплением.

парів склала лише 0,3 г у добу, або менше 30% від кількості вологи, що притікала в зону різкого охолодження при короткий 6-сантиметрових колонках. Таким чином, навіть у найбільше сприятливих для конден| сации водяних парів умовах безпосередня роль конденсації пароподібної вологи невелика. Проте при конденсації пара виділяється тепла 539 кал/р, у той час як при замерзання рідкої води виділяється тільки 80 кал/м. Тому в загальному балансі. схованої теплості, що виділяється при. конденсації і замерзанні вологи, що притекла, частка пароподібної притоки складає вже № 15-30%, а 80-90%, саме пароподібна форма переміщення вологи і визначає швидкість промерзання не цілком насичених грунтів.

Рисунок 3.2 - Різновиду води в грунті: 1-роз'єднана капілярна вода; 2- рухлива капілярна вода; 3 – рихлозв’язна вода; 4 - прочносвязанная вода; 5 -- частки грунту; 6 - водяні пари.

 

Оскільки загальна притока вологи в зону охолодження у свою оче редь залежить від швидкості охолодження, то варто визнати, 'что в N цілком насичених грунтах щ рообразный притока вологи грає значну, а не другорядну роль. Це, безсумнівно, осложняв аналітичний розрахунок промерзань таких грунтів, у насичених ж грунтах пароподібне переміщена вологи істотної ролі не грає.

У 1940-1941 р. Н. А. Цытович, у той час зовсім занимавшийся не питаннями міграції вологи в грунтах, на підставі узагальнення результатів лабораторних іспитів технічних властивостей мерзлих грунтів приходив до висновку про існування в грунтах при негативній температурі води, що не змерзнула.

Незабаром 3. А. Нерсесовой був розроблений калориметриче ский метод визначення води, що не змерзнула, за допомогою якого було встановлено, що при будь-яких негативної температур у мерзлих грунтах деяка кількість води залишається в незамерзшем стані.

В даний час по чинним на воду переважним силам, ступеня її рухливості і розташуванню в порах грунт розрізняють такі різновиди води: а) водяний пар, що заповнює повітряні пори і постійна перемещающийся під сили ваги, що действием молекулярних сил незалежно від, убік меншої пругкості водяних парів; б) пов'язана вода, утримувана у виді водяних плівок молекулярними й іонними силами (адсорбції), що діють на поверхні часток грунту товщина прошарків пов'язаної води і сили, що утримують її, як указувалося раніше, залежать від мінералогічного й іонного складу.

У одиниця об'єму грунту кількість пов'язаної води тим більше, чим більше питома поверхня і гидрофильность грунтових часток і чим нижче позитивна температура. Молекули води в прошарках, розташованих безпосередньо в поверхні часток (гігроскопічна вода). зовсім позбавлені індивідуальної кінетичної енергії поступального й обертального прямування. Такі прошарки молекул води, утримувані адсорбційними силами, рівними 50 р/ см2 і більш, прийнято називати міцно зв'язковою водою; вона має велику щільність, про що свідчить виділення теплості при змочуванні нею сухого грунту; вона не пересувається сисною силою коренів рослин, володіє зниженої спроможність розчиняти солі, рухається тільки обращая в пар, і не замерзає навіть при дуже низькій температурі (-750). Чисельно її утримання в грунтах приблизно соответсвует подвійної гігроскопічної вологості. Особливе значення для міграції вологи при замерзанні і випарі має периферійна, так називана пухко-пов'язана вода, утримуваний навколо часток грунту адсорбційними силами менше 50 р/см2. Ця вода також має знижену температуру замерзання, тому що її молекули сближены чинними на них адсорбційними силами й орієнтовані у визначеному напрямку в електричному полі іонів; проте температура замерзання пухко-пов'язаної води коливається в невеличкому інтервалі негативних температур (від 0,1 до 100); чисельно максимальна кількість пухко-пов'язаної води відповідає вологості, приблизно рівної

максимальної молекулярної влагоемкости грунту (по Лебедєву);

в) капілярна вода, утримувана в порах грунту силами менісків, води, що діють на поверхні поділу води і повітря. Розрізняють роз'єднану, нерухому капілярну воду, що збирається в рогах пір і рухливої капілярної води, що має гідравлічний зв'язок по капілярах грунту з рівнем грунтової води.

Тиск у капілярній воді завжди менше атмосферного; отже, замерзання власне капілярної води відбувається при температурі, близької до 0; тому пересуватися і накопляться в зоні негативних температур капілярна вода в Грунті не може; вона є лише постачальником, що заповнює спад пов'язаної вологи, що переміщається в зону промерзання.

Деякі дослідники, на противагу А. Ф. Лебедєву, відносять і пов'язану в грунтах воду до категорії капілярної, роз'єднаної, тобто нерухомої води, незважаючи на те, що тиск у капілярній воді менше, а в плівкової більше атмосферного. Автор не згодний з об'єднанням цих двох категорії вологи, різноманітних по поводженню при замерзанні, в одну, не згодний із супротивниками гіпотези плівкового (або адсорбційного) стани вологи, що вважають усю грунтову вологу капілярної.

На доказ уявлень про більш високу температуру замерзання капілярної води автор провів у Лабораторії Союздорнии спеціальні досвіди по заморожуванню капілярної води у вузьких скляних трубках капилляриметрах—при різному її натягу.

Таким чином, ці досвіди підтвердили, що капілярна вода замерзає навіть раніше вільної води і тому брати участь безпосередньо в пересуванні вологи в зоні негативних температурі не може.

Вільна і капілярна вода переходить у лід при температурі біля 0, якщо не вважати явища переохолодження води в тонких капілярах, діаметр яких настільки малий, що на воду, крім меніскових сил поверхневого натягу води, починає позначатися дія також і поверхневих електричних і молекулярних сил із боку твердих часток - стінок капілярів.

Інше дело-связанная вода в грунтах, що якісно неоднорідне і замерзання якої відбувається поступово, у міру зниження температури. Для встановлення основної залежності - температури замерзання різноманітних прошарків пов'язаної води - автор використовував два різноманітних методи, запропонованих Інститутом мерзлотоведения Академії наук СРСР. Автором було вперше запропоновано використовувати отримані при цьому залежності для розрахунку влагонакопления.

 

Лекція № 6, 7

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 289; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.