Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод электронного баланса




Данный метод основан на представлении о степени окисления атома в веществе.

Степень окисления - это условный заряд атома, найденный исходя из предположения, что все связи в веществе чисто ионные. Степень окисления обозначается арабской цифрой со знаком (+) или (-).

Ионной связи в чистом виде в природе не существует. Например, в кристаллическом хлориде натрия (NaCl), натрий имеет реальный заряд +0,8, а хлор (-0,8) заряда электрона по модулю. Отсюда следует, что степени окисления натрия (Na+) и хлора (Cl-) являются понятием формальным.

Тем не менее, метод электронного баланса в настоящее время широко используется, так как он наиболее прост и универсален. Практически единственным ограничением этого метода является то, что он позволяет уравнивать только полные схемы реакций.

 

Правила нахождения степеней окисления

Для применения метода электронного баланса необходимо знать степени окисления всех атомов в формулах веществ (исходных и продуктов реакции). Степени окисления находятся с использованием следующих правил:

1. Cтепень окисления атома в простом веществе равна нулю:

H; N; Mg; Cи т.д.

2. Сумма степеней окисления всех атомов в формульной единице вещества (молекуле) равна нулю.

KCrO 2 × (+1) + 2 × (+6) + 7 × (-2) = 0

Чтобы воспользоваться этим правилом необходимо запомнить перечень химических элементов, атомы которых во всех (или почти во всех) их соединениях имеют одну и ту же степень окисления.

 

Степень окисления атома элемента в соединениях Исключения
Li+, Na+, K+, Rb+, Cs+, Fr+ ¾¾¾
Be+2, Mg+2, Ca+2, Sr+2, Ba+2, Ra+2 ¾¾¾
Al+3, Ga+3, Zn+3 Al+, Ga+, Zn+ - очень редко
Ag+, Zn+2, Cd+2 Ag+2 - очень редко
F- ¾¾¾
H+ H- - в гидридах (NaH и т.п.)
O-2 O- - в пероксидах (H2O2,, K2O2 и т.п.) O-1/2 - в надпероксидах (KO2 и т.п.) O-1/3 - в озонидах (KO3) O+, O+2 - во фторидах кислорода (O2F2, OF2)

 

Возвратимся к приведенному выше примеру: KCrO.

Cтепени окисления калия и кислорода найдены по таблице. Далее применяем правило электронейтральности молекулы: 2 × (+1) + 2 x + 7 × (-2) = 0. Отсюда: x = +6.

3. Степени окисления атомов в кислотных остатках такие же, как в соответствующих им кислотам. Это правило является следствием определения кислотного остатка: кислотный остаток - это часть молекулы кислоты, перешедшая в соль без изменений.

Пример: MnySxO.

Вначале находим х. Кислотный остаток (сульфат) соответствует серной кислоте - HS+6O.

Теперь, по правилу электронейтральности молекулы можно найти степень окисления марганца: y + 6 + 4 (-2) = 0; y = +2.

 

Алгоритм применения метода электронного баланса

1. Написать схему реакции. Схема реакции - это условное химическое выражение, в котором слева указаны исходные вещества, справа - известные продукты реакции. Между правой и левой частями схемы ставится знак “стрелка”. Схема может быть полной (известны все продукты) и неполной (известна только часть продуктов). Метод электронного баланса позволяет работать только с полными схемами. Единственным веществом, которое можно не указывать в схеме является вода.

Пример: Cu + HNO3 ® Cu(NO3)2 + NO +....

(многоточие означает, что в правой и левой части окончательного уравнения может появиться вода).

2. Над каждым атомом в схеме поставить степени окисления:

Cu0 + H+1N+5O ® Cu+2(N+5O)2 + N+2O-2 +....

3. Найти атомы, изменившие свои степени окисления. Составить для них уравнения электронных переходов:

Cu0 + H+1N+5O ® Cu+2(N+5O)2 + N+2O-2 +....

Cu0 - 2= Cu+2,

N+5 + 3= N+2.

4. Сделать электронный баланс (подобрать коэффициенты, на которые нужно умножить уравнения электронных переходов, чтобы число электронов, ушедших от восстановителей, было равно количеству электронов, принятых окислителем).

Cu0 - 2= Cu+2 3

N+5 + 3= N+2 2

Из электронного баланса следует, что в левой части полученного уравнения на каждые 3 атома восстановителя (Cu+2) должно приходиться 2 атома окислителя (N+5). В правой части будущего уравнения на 3 атома Cu+2 должно приходиться 2 атома N+2.

5. В схеме реакции поставить первые коэффициенты в соответствии с электронным балансом (там, где это возможно!).

3Cu + HNO3 ® 3Cu(NO3)2 + 2NO +....

Обратите внимание: из четырех теоретически возможных коэффициентов указаны только три. Перед азотной кислотой коэффициент пока неизвестен, т.к. N+5 ведет себя сложным образом: с одной стороны принимает участие в ОВР (это учтено в электронном балансе), а с другой - переходит без изменений в нитрат меди (Сu(NO3)2) (это не учтено в электронном балансе, т.к. при этом степень окисления азота не меняется).

6. Уравнять по всем атомам, кроме водорода и кислорода. При этом произвольное изменение коэффициентов, полученных из электронного баланса недопустимо.

3Cu + 8 HNO3 ® 3Cu(NO3)2 + 2NO +....

7. Уравнять по водороду. Это делается только одним способом: добавлением соответствующего числа молекул воды в ту часть схемы, где водорода не хватает. В данном примере слева 8 атомов водорода, а справа - нуль. Молекула Н2О содержит 2 атома водорода:

3Cu + 8HNO3 ® 3Cu(NO3)2 + 2NO + 4H2O.

8. Полученное выражение должно быть уравнением ОВР, если до того не было допущено ошибки. Необходимо проверить данное уравнение по кислороду. Если справа и слева количество атомов кислорода одинаково, вместо “стрелки” ставим знак “равно” (это уравнение). Если по кислороду не сошлось, то следует повторить уравнивание, начиная с пункта 1.

Окончательное уравнение:

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O.

 

Метод полуреакций (электронно-ионного баланса)

Данный метод применяется для составления уравнений ОВР в водных растворах с участием электролитов.

В этом методе не используется понятие степень окисления, а рассматривается обмен электронами между реальными частицами, присутствующими в растворе - ионами и молекулами. Метод полуреакций позволяет использовать в качестве исходных неполные схемы реакций.

К недостаткам этого метода следует отнести его некоторую громоздкость и ограниченность в применении только растворами электролитов.

Алгоритм применения метода полуреакций

(электронно - ионного баланса)

 

1. Написать схему реакции. Схема может быть полной или неполной. В случае использования неполной схемы из продуктов реакции необходимо знать только частицу, в которую перешел окислитель и частицу, в которую перешел восстановитель в ходе ОВР.

Пример:

а) полная схема реакции:

Na2Cr2O7 + K2SO3 + H2SO4 ® Cr2(SO4)3 + K2SO4 + Na2SO4 + H2O;

б) неполная схема этой же реакции, достаточная для применения метода полуреакций:

Na2Cr2O7 + K2SO3 + H2SO4 ® Cr+3 + SO +....

Пока для простоты будем использовать полную схему взаимодействия. Применение метода полуреакций к неполным схемам рассмотрено в конце этой главы.

2. Написать ионную схему реакции. При этом, на ионы разбиваются только сильные электролиты, хорошо растворимые в воде (как при составлении обменных ионных уравнений):

2Na+ + Cr2O+ 2K+ + SO+ 2H+ + SO® 2Cr+3 + SO+ 2K+ + SO+ 2Na+ + SO+ H2O.

П р и м е ч а н и е. Стехиометрические коэффициенты перед ионами можно не указывать. Они не имеют никакого смысла, так как данное выражение является схемой, а не уравнением реакции:

Na+ + Cr2O+ K+ + SO+ H+ + SO ® Cr+3 + SO + K+ +SO+ Na+ + SO+ H2O.

3. Сравнить правую и левую части ионной схемы и найти частицы, изменившие свою химическую форму. Под изменением химической формы подразумевается:

а) изменение заряда частицы;

б) изменение формульного состава частицы.

П р и м е ч а н и е. В данном пункте частицы H+, OH- и H2O не рассматриваются.

SO® SO (произошло изменение формульного состава частицы);

Сr2O® Cr+3 (произошло изменение как формульного состава, так и заряда частицы).

4. Составить уравнения полуреакций окисления и восстановления. Это делается в такой последовательности.

а) уравниваются правые и левые части полуреакций по всем атомам, кроме кислорода и водорода:

SO® SO,

Cr2O® 2Cr+3,

б) полуреакции уравниваются по кислороду и водороду с учетом кислотности среды (далее будет рассмотрено отдельно)

SO + H2O ® SO + 2H+,

Cr2O + 14 H+ ® 2Cr+3 + 7H2O,

в) полуреакции уравниваются по зарядам с помощью электронов. В первой полуреакции суммарный заряд частиц слева = -2, а справа = 0. Значит, справа нужно прибавить 2(или слева отнять 2):

SO + H2O - 2 = SO + 2H+.

Для уравнивания второй полуреакции слева нужно прибавить 6:

Cr2O + 14H+ + 6 = 2Cr+3 + 7H2O.

Полученные выражения являются уравнениями полуреакций.

5. Сделать электронный баланс, то есть подобрать коэффициенты, на которые необходимо умножить полуреакции окисления и восстановления, чтобы количество электронов, ушедших от восстановителя было равно числу электронов, пришедших к окислителю:

SO + H2O - 2 = SO + 2H+ 3

Cr2O + 14H+ + 6 = 2Cr+3 + 7H2O 1

6. Умножить верхнее и нижнее уравнения полуреакций на коэффициенты электронного баланса. Затем сложить их и получить сокращенное ионное уравнение ОВР. В данном примере полуреакцию окисления нужно умножить на 3, а полуреакцию восстановления - на 1. После сложения получаем:

3SO + 3H2O + Cr2O + 14H+ = 3SO + 6H+ + 2Cr+3 + 7H2O.

Далее сокращаем (по Н2О и Н+):

3SO + Cr2O + 8H+ = 3SO + 2Cr+3 + 4H2O.

Данное выражение является сокращенным ионным уравнением взаимодействия между восстановителем (SO) и окислителем (Cr2O) в кислой среде.

Если необходимо получить молекулярное уравнение реакции, то следует выполнить еще один пункт.

7. Сокращенное ионное уравнение сложить с дополнительным ионным уравнением и получить полное ионное уравнение, которое затем преобразовать в молекулярное уравнение ОВР.

3SO + Cr2O + 8H+ = 3SO + 2Cr+3 + 4H2O,

6K+ + 2Na+ + 4SO = 6K+ + 3SO + 2Na+ + SO

6K+ + 3SO + 2Na+ + Cr2O + 8H+ + 4SO =

= 6K+ + 3SO + 2Cr+3 + 3SO + 4H2O + 2Na+ + SO .

 

3K2SO3 + Na2Cr2O7 + 4H2SO4 = Cr2(SO4)3 + 3K2SO4 + Na2SO4 + 4H2O.

 

П р и м е ч а н и е. В целях экономии времени полное ионное уравнение ОВР обычно не пишут, а при сложении сокращенного ионного с дополнительным ионным уравнением сразу же получают молекулярное уравнение.

 

Уравнивание полуреакций по кислороду и водороду с учетом кислотности cреды

 

Как известно, в растворе среда может быть кислой, щелочной или нейтральной.

П р и м е ч а н и е. Если среда в растворе слабокислая (рН немного меньше 7) или слабо щелочная (рН немного больше 7) уравнивание производят, считая среду практически нейтральной.

I. Среда кислая (рН<< 7). Для составления полуреакции разрешены частицы только 2-х видов: это ион Н+ и молекула Н2О.

Полезно запомнить следующую схему:

2H+ + O* ~ H2O.

По элементному составу 2 иона Н+ и один атом “связанного” кислорода (О*) эквивалентны одной молекуле воды. Под “связанным” кислородом понимается атом кислорода, входящий в состав любой кислородсодержащей частицы (например: в молекуле СО2 два “связанных” кислорода, а в ионе SO- их четыре).

Пример 1. SO® SO.

Ион SOсодержит 3 О*, а ион SOсодержит 4 О*. Чтобы уравнять по кислороду, слева следует добавить 1 молекулу Н2О. При этом справа должно появиться 2 иона Н+ (чтобы сошлось по водороду):

SO + H2O ® SO + 2H+.

Пример 2. Cr2O ® 2Cr+3.

Ё1йцу еСлева 7 атомов кислорода, а справа - ни одного. Слева добавляем 14 Н+, при этом справа появляется 7 Н2О.

Пример 3. NO® NH.

Cлева следует добавить 10 Н+. Из них 6 Н+ “свяжут” 3 кислорода в 3 молекулы воды, а 4 Н+ необходимы для получения иона аммония:

NO + 10 H+ ® NH + 3H2O.

П р и м е ч а н и е. Полученные в этих примерах схемы полуреакций не являются уравнениями. Далее их следует уравнять по зарядам с помощью электронов.

II. Среда щелочная (рН >> 7). В данном случае для уравнивания по кислороду и водороду можно использовать только ионы ОН- и молекулы Н2О. Между этими частицами имеет место следующее соотношение (по элементарному составу):

2OH- ~ H2O + O*.

 

Пример 1. SO ® SO,

SO + 2OH- ® SO + H2O.

Пример 2. CrO ® Cr+3,

CrO + 4H2O ® Cr+3 + 8OH-.

Пример 3. MnO2 ® MnO,

MnO2 + 4OH- ® MnO + 2H2O.

Пример 4. N2H4 ® N2,

N2H4 + 4OH- ® N2 + 4H2O.

 

III. Среда нейтральная (рН» 7). Для уравнивания по кислороду и водороду в схеме полуреакции слева можно писать только Н2О. Справа могут появиться или Н+ или OH-.

Пример 1. SO ® SO,

SO + H2O ® SO + 2H+.

Обратите внимание: в данном случае схема реакции совпадает с таковой для случая кислой среды.

Пример 2. NO ® NO,

NO + H2O ® NO + 2OH-.

Полученное выражение аналогично переходу нитрата в нитрит в щелочной среде.

 

Применение метода полуреакций для неполных схем

 

Рассмотрим следующий пример: к раствору KMnO4 добавили несколько капель H2SO4 (т.е. создали кислую среду), а затем добавили раствор Na2SO3. Составить уравнение ОВР. Условие задачи можно записать в виде схемы:

KMnO4 + Na2SO3 + H2SO4 ®....

или в ионном виде:

K+ + MnO + 2Na+ + SO + 2H+ + SO ®....

окислитель восст. “среда”

Из литературы известно, что ион MnOявляется довольно сильным окислителем в любых средах. В кислой среде (в нашем случае) имеет место переход: MnO ® Mn+2.

Так же известно, что SOв любых средах склонен проявлять восстановительные свойства. Причем, независимо от cреды сульфит переходит в сульфат: SO ® SO.

Напишем уравнения соответствующих полуреакций и сделаем электронный баланс:

MnO + 8H+ + 5 = Mn+2 + 4H2O 2

SO + H2O - 2 = SO + 2H+ 5

Умножим уравнения полуреакций на коэффициенты электронного баланса и сложим. После сокращения одинаковых ионов получим сокращенное ионное уравнение ОВР:

2MnO+ 16H+ + 5H2O = 2Mn+2 + 8H2O + 5SO+ 10 H+,

2MnO + 6H+ + 5SO = 2Mn+2 + 3H2O + 5SO.

Напишем снизу дополнительное ионное уравнение:

2MnO + 6 H+ + 5SO = 2Mn+2 + 3H2O + 5SO.

2K+ + 3SO+ 10Na+ = 2SO+ 10Na+ + 2K+ + SO.

Далее получаем молекулярное уравнение ОВР:

2KMnO4 + 3H2SO4 + 5Na2SO3 = 2MnSO4 + 3H2O + 5Na2SO4 + +K2SO4.


ТЕМА 8. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

 

 

Вопросы программы:

1. Понятие о комплексных соединениях.

2. Координационная теория Вернера: внутренняя и внешняя сферы комплексного соединения, комплексообразователь, координационное число комплексообразователя, координационная емкость лиганда (дентантность).

3. Номенклатура комплексных соединений.

4. Диссоциация комплексных соединений.

5. Химическая связь в комплексах (электростатическая модель; с позиций МВС).

 

Понятие о комплексных соединениях было введено в химию А.Вернером. По Вернеру все химические вещества можно (очень условно) разделить на два типа:

1. Cоединения первого порядка. К ним относятся все вещества, в которых атомы элементов проявляют свои обычные валентности:

H2O, Zn(OH)2, NH3, KCN и т.д.

2. Соединения высшего порядка. Это вещества получаются в реакциях присоединения между соединениями первого порядка:

Zn(OH)2 + 4NH3 = [Zn(NH3)4] (OH)2,

Fe(CN)3 + 3KCN = K3[Fe(CN)6].

Соединения высшего порядка в дальнейшем получили название - комплексные соединения. Точного определения комплексных соединений не существует, так как деление химических веществ на комплексные и некомплексные носит условный характер.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2255; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.