Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

IX. Многоступенчатые турбины




1. Необходимость многоступенчатой конструкции.

Располагаемый теплоперепад турбины, зависящий от начальных (Р0, t0) и конечных параметров (Рк), для современных конструкций составляет 800 ÷ 1800 кДж / кг. Создать экономичную одноступенчатую турбину при таких теплоперепадах и достигнутом в настоящее время уровне прочности металлов невозможно. Так скорость пара на выходе из сопл в этом случае достигала бы . Для экономичной работы такой одноступенчатой турбины необходимая окружная скорость рабочих лопаток на среднем диаметре при оптимальном отношении скоростей u / cф = 0,5 должна составить u = (750 ÷ 1000) м/с.

Обеспечить прочность ротора и рабочих лопаток при таких окружных скоростях практически невозможно. Кроме того, число Маха в потоке пара в этом случае составит М = 3 ÷ 4, что повлечет за собой большие волновые потери энергии в потоке.

Условия прочности вращающегося ротора в области высоких температур ограничивают окружную скорость величиной u = 180 ÷ 200 м/с.

Если принять , то скорость потока должна быть равна Сф = u / xp = 200 / 0,5 = 400 м/с и таким образом максимальный теплоперепад, который возможно переработать в одной ступени с достаточной экономичностью, составит:

Это значение значительно меньше располагаемого теплоперепада всей турбины, что и предопределяет ее многоступенчатую конструкцию.

 

2. Преимущества многоступенчатой турбины.

1.) С применением значительного числа ступеней можно для каждой ступени выбрать такой небольшой теплоперепад, чтобы при умеренных окружных скоростях обеспечить оптимальные значения u / cф, при которых КПД отдельных ступеней достигает максимального значения.

2.) Уменьшение теплоперепада ступени и связанное с этим уменьшение диаметра ступени (при заданной частоте вращения)

 

приводят к увеличению высот лопаток , а это, соответственно, приводит к снижению концевых потерь в решетке, что существенно повышает КПД ступени. Кроме того, увеличение высоты сопловых и рабочих лопаток приводит к снижению протечек пара в зазоры по бандажу и по корню рабочих лопаток.

3.) В многоступенчатой турбине энергия выходной скорости предыдущей ступени используется в сопловых лопатках последующей ступени, повышая, таким образом, располагаемую энергию последующей ступени. Поэтому потери энергии с выходной скоростью в промежуточных ступенях равны нулю. Выходная скорость теряется полностью обычно в регулирующей и в последних ступенях турбины и ее отдельных цилиндров.

4.) В многоступенчатой турбине тепловая энергия потерь предыдущих ступеней частично используется для выработки полезной энергии в последующих ступенях за счет явления возврата теплоты в турбине.

5.) Конструкция многоступенчатой турбины позволяет осуществить отборы пара для регенеративного подогрева питательной воды и промежуточного перегрева пара, что существенно повышает абсолютный КПД турбины.

Рис.1. Диаграмма отборов пара турбины К – 800 – 240 ЛМЗ.

3. Недостатки многоступенчатой турбины.

1.) С увеличением числа ступеней усложняется конструкция турбины, и возрастает стоимость ее изготовления. Для мощных энергетических турбин это окупается за счет повышения КПД турбоустановки.

2.) В многоступенчатой турбине возрастают потери от утечек пара через переднее концевое уплотнение, и возникают утечки в диафрагменных уплотнениях. Чем больше турбина имеет ступеней, тем выше давление пара перед передним концевым уплотнением. Кроме того, общий КПД турбины снижают потери энергии в перепускных паропроводах между корпусами турбины, а также гидравлические потери энергии в стопорных и регулирующих клапанах, устанавливаемых перед турбиной и перед ЧСД в турбинах с промперегревом пара.

4. Коэффициент возврата теплоты.

Одним из преимуществ многоступенчатой конструкции является использование части потерь энергии предыдущих ступеней в виде полезной работы в последующих ступенях.

Потери энергии переходят в теплоту и, таким образом, повышают энтальпию пара за ступенью. В области перегретого пара это приводит к повышению температуры пара за ступенью, а в области влажного пара к увеличению степени сухости пара х.

Проанализируем процесс расширения пара в h-s диаграмм

При внимательном рассмотрении h-s диаграммы можно убедиться в том, что с увеличением энтропии s вертикальные расстояния между изобарами увеличиваются. Применительно к расширению пара в проточной части турбины это означает, что реальный располагаемый теплоперепад некоторой ступени больше, чем располагаемый теплоперепад этой же ступени при протекании процесса расширения по изоэнтропе 0 – к . Таким образом, сумма

Рис.2.

располагаемых теплоперепадов всех ступеней за счет возникающих в них потерь оказывается больше, чем располагаемый теплоперепад турбины , и потери энергии как бы частично возвращаются (3÷5 % располагаемого теплоперепада). Это явление называют возвратом теплоты.

Вернемся к рис.2. использованный теплоперепад отдельной ступени Нi можно представить в виде:

.

Тогда для всей турбины:

.

 

Если предположить, что КПД всех ступеней одинаковы , то:

,

где Qв.т. – часть теплоты, вызванной потерями в ступенях, которая может быть использована в последующих ступенях.

Сравнивая два выражения для , получим выражение для определения КПД всей турбины :

,

где - коэффициент возврата теплоты, определяющий долю потерь, которая может быть использована в последующих ступенях турбины.

Для приближенной оценки коэффициента возврата теплоты можно воспользоваться формулой:

,

где kв.т. = 4,8 ·10-4 для ступеней, работающих в перегретом паре;

kв.т. = 2,8 ·10-4 для ступеней, работающих во влажном паре;

kв.т. = (3,2 ÷ 4,3) ·10-4 для групп ступеней, часть которых работает в области перегретого пара, а часть в области влажного пара.

5. Потери энергии в паровпуске и в выходном патрубке турбины.

Прежде, чем пар поступит к соплам регулирующей ступени, он проходит стопорный и регулирующий клапаны, в которых происходит потеря давления и, таким образом, потеря энергии.

Потеря энергии в паровпуске - .

Рис.3.

 

При правильно выполненном стопорном клапане и элементах паровпуска потеря давления на расчетном не превышает 3÷5 % от начального.

Пару, выходящему из последней ступени, необходимо преодолеть аэродинамическое сопротивление выходного патрубка. Осуществляется это за счет кинетической энергии С22 /2 потока пара, выходящего из последней ступени. Однако, как правило, кинетической энергии С22 /2 не хватает на преодоление аэродинамического сопротивления патрубка, и поэтому за последней ступенью устанавливается давление Р’к > Pк. тогда конечной точкой процесса расширения пара в проточной части будет точка B, а на выходе из патрубка – точка D (см. рис.3).




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2563; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.