Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Малый биологический круговорот веществ




Содержание углерода на поверхности Земли и в земной коре (16 км мощности)

Объекты тонны В граммах на 1 см2поверхности Земли
Животные 5∙109 0,0015
Растения 5∙1011 0,1
Атмосфера 6,4∙1011 0,125
Океан 3,8∙1013 7,5
Массивные кристаллические породы: базальты и др. основные породы 1,7∙1014 33,0
Граниты, гранодиориты 2,9∙1015  
Угли, нефти и другие каустобиолиты 6,4∙1015  
Кристаллические сланцы 1∙1016  
Карбонаты 1,3∙1016  
Всего 3,2∙1016  

 

В активном круговороте углерода участвует очень небольшая часть всей его массы (таблица 2). Огромное количество угольной кислоты законсервировано в виде ископаемых известняков и др. пород. Между углекислым газом атмосферы и водой океана, в свою очередь, существует подвижное равновесие.

Многие водные организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Из атмосферы было извлечено и захоронено в десятки тысяч раз больше углекислого газа, чем в ней находится в данный момент. Атмосфера пополняется углекислым газом благодаря процессам разложения органического вещества, карбонатов и др., а также, всё в большей мере, в результате индустриальной деятельности человека. Особенно мощным источником являются вулканы, газы которых состоят главным образом из углекислого газа и паров воды. Некоторая часть углекислого газа и воды, извергаемых вулканами, возрождается из осадочных пород, в частности известняков, при контакте магмы с ними и их ассимиляции магмой. В процессе круговорота углерода происходит неоднократное фракционирование его по изотопному составу (12C-13C), особенно в магматогенном процессе (образование CO2, алмазов, карбонатов), при биогенном образовании органического вещества (угля, нефти, тканей организмов и др.).

Круговорот азота. Источником азота на Земле был вулканогенный NH3, окисленный кислородом. Процесс окисления азота сопровождается нарушением его изотопного состава – 14N-15N. Основная масса азота на поверхности Земли находится в виде газа (N2) в атмосфере. Известны два пути его вовлечения в биогенный круговорот:

1. Процессы электрического (в тихом разряде) и фотохимического окисления азота воздуха, дающие разные оксиды азота (NO2, NO-3 и др.), которые растворяются в дождевой воде и вносятся в почвы (10- 15 кг/га в год).

2. Биологическая фиксация N2 клубеньковыми бактериями (до 300 кг/га в год), свободными азотфиксаторами и др. микроорганизмами (до 100 кг/га в год).

Значение азота в обмене веществ организмов общеизвестно. Он входит в состав белков и их разнообразных производных. Остатки организмов на поверхности Земли или погребённые в толще пород подвергаются разрушению при участии многочисленных микроорганизмов. В этих процессах органический азот подвергается различным превращениям. В результате процесса денитрификации при участии бактерий образуется элементарный азот, возвращающийся непосредственно в атмосферу. Так, например, наблюдаются подземные газовые струи, состоящие почти из чистого азота (N2). Биогенный характер этих струй доказывается отсутствием в их составе аргона (40Ar), обычного в атмосфере. При разложении белков образуются также аммиак и его производные, попадающие затем в воздух и в воду океана. В биосфере в результате нитрификации – окисления аммиака и других азотсодержащих органических соединений при участии бактерии Nitrosomonas и нитробактерий — образуются различные окислы азота (N2O, NO, N2O3 и N2O5). Азотная кислота с металлами даёт соли. Калийная селитра образуется на поверхности Земли в кислородной атмосфере в условиях жаркого и сухого климата в местах отложений остатков водорослей. Скопления селитры можно наблюдать в пустынях на дне ниш выдувания. В результате деятельности денитрифицирующих бактерий соли азотной кислоты могут восстанавливаться до азотистой кислоты и далее до свободного азота.

Круговорот фосфора. Главный источник фосфора в биосфере – апатит, который встречается во всех магматических породах. В превращениях фосфора большую роль играет живое вещество. Организмы извлекают фосфор из почв, водных растворов. Фосфор входит в состав белков, нуклеиновых кислот, лецитинов, фитина и др. органических соединений; особенно много фосфора в костях животных. С гибелью организмов фосфор возвращается в почву и в донные отложения. Он концентрируется в виде морских фосфатных конкреций, отложений костей рыб, гуано, что создаёт условия для образования богатых фосфором пород, которые, в свою очередь, служат источниками фосфора в биогенном цикле.

Круговорот серы также тесно связан с живым веществом. Сера в виде трёхокиси (SO3), двуокиси (SO2), сероводорода (H2S) и главным образом элементарной серы выбрасывается вулканами. Кроме того, в природе имеются в большом количестве различные сульфиды металлов: железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере при участии многочисленных микроорганизмов до сульфатной серы (SO2-4) почв и водоёмов. Сульфаты поглощаются растениями. В организмах сера входит в состав аминокислот и белков, а у растений, кроме того, — в состав эфирных масел и т. д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются очень сложными превращениями серы. При разрушении белков с участием микроорганизмов образуется сероводород, который далее окисляется либо до элементарной серы, либо до сульфатов. В этом процессе участвуют разнообразные микроорганизмы, создающие многочисленные промежуточные соединения серы. Известны месторождения серы биогенного происхождения. Сероводород может вновь образовать «вторичные» сульфиды, а сульфатная сера — залежи гипса. В свою очередь, сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию.

Живое вещество Земли на 99% представлено массой растительных организмов, поэтому характер биологического круговорота определяется, в первую очередь, зелеными растениями. Главной функцией растений в биосфере и в почвообразовании является синтез органического вещества и накопление потенциальной энергии в почве.

Зеленые растения представлены лесными и травянистыми сообществами, влияние которых на ландшафтогенез и почвообразование существенно различается.

Для характеристики биологического круговорота веществ и роли растений в почвообразовании учитываются следующие показатели:

- общая биомасса (фитомасса) – общее количество живого органического вещества в надземной и подземной сферах;

- мертвое органическое вещество – количество органического вещества, заключенное в отмерших остатках растений. Отдельно различают: запасы гумуса, лесных подстилок, степного войлока, количество ежегодного надземного опада (листья, хвоя, стебли, ветошь и др.), количество ежегодного корневого опада, запасы легкоразлагаемого органического вещества (детрита);

- зольность – содержание зольных элементов в растениях и их частях (рассчитывается в % к массе абсолютно сухого вещества). Отдельно рассчитывают зольность фитомассы, годичного прироста, опада, подстилки, торфов;

- годичный прирост – масса нарастающего вещества в надземной и подземной сферах сообщества;

- интенсивность разложения органического вещества – отношение подстилки к опаду зеленой части растений.

В таблице 3 приведены показатели биологического круговорота растительных сообществ основных природных зон в составе древесных, кустарниковых, травянистых и мохово-лишайниковых формаций.

Для биологического круговорота веществ лесных сообществ таёжно-лесной зоны характерно длительное исключение из него значительной части азота и зольных элементов, которые накапливаются в стволах и ветвях. Только незначительная часть органических веществ (3–5 т/га) поступает ежегодно в почву в форме наземного опада (хвоя, листья, ветошь и др.). Вместе с ними в почву возвращаются 50-300 кг/га зольных элементов и азота, значительная часть которых накапливается в составе лесной подстилки и постепенно, за 3-10 и более лет, высвобождаются при ее разложении. Продукты разложения вновь вовлекаются в биологический круговорот и частично, с атмосферными осадками поступают в нижележащие горизонты почвенного профиля, вплоть до грунтовых вод.

Для биологического круговорота травянистых сообществ характерно значительно меньшее накопление общей массы, но существенно большее возвращение с ежегодным опадом (до 15 т/га сухого вещества) по сравнению с лесными формациями. В сообществах луговых степей до 700 кг зольных элементов и азота ежегодно возвращаются в почву вместе с опадом. Значительная часть опада (до 70%) поступает не на поверхность почвы, а в форме корней в верхние горизонты почвенного профиля, что способствует накоплению гумуса и формированию структуры (агрегатов разного размера) почвы. С величиной ежегодного опада тесно связано количество образующегося гумуса, численность микрофлоры и микрофауны.

Интенсивность разложения опада определяется, в первую очередь, гидротермическими условиями. Если в условиях влажных тропических лесов при величине опада в 25 т/га лесная подстилка составляет только 2 т/га, то в лесах умеренного пояса из 3-5 т/га опада накапливается 30-50 т/га лесной подстилки. Различия в биохимическом составе растительного опада обусловливают разную скорость его разложения даже в одинаковых гидротермических условиях, что отражается на составе образующегося гумуса. Большое влияние на почвообразование оказывают зольность опада, количество оснований и азота в его составе. Зольность растений в среднем составляет около 1,5%, но во многих злаковых и эфемерно-полынных сообществах может достигать 8-10%, а в галофитных сообществах на солончаках – даже 20-50%.

Растения обладают свойством избирательно поглощать и концентрировать из рассеянного состояния химические элементы, необходимые для их роста и развития. Благодаря этому в почвах происходит биогенное накопление ряда биофильных элементов, таких как фосфор, кальций, магний, калий, сера и др. Обогащение верхних слоев почвы основаниями и азотом способствует образованию и накоплению в них гумуса. В процессе питания корни растений в обмен на поглощенные ими элементы питания продуцируют значительное количество корневых выделений, в составе которых много ионов водорода и анионов органических кислот. По данным ряда ученых, корневые выделения составляют десятки и сотни килограммов на 1 га. Вместе с органическими кислотами, образующимися при разложении опада, и углекислотой, выделяемой при дыхании корней, они проделывают большую химическую работу, вовлекая в биологический круговорот веществ новые порции химических элементов из горных пород и минералов.

Растения, наконец, защищают почву от эрозионных процессов. В естественных условиях количество сносимого эрозионными процессами материала компенсируется процессами почвообразования.

 

Изучение круговоротов веществ на Земле имеет не только познавательное значение, но и представляет глубокий практический интерес. Воздействие человека на природные процессы становится всё значительнее. Последствия этого воздействия стали сопоставимы с результатами геологических процессов: в биосфере возникают новые пути миграции веществ и энергии, появляются многие тысячи химических соединений, прежде ей не свойственных. Создаются новые водные бассейны; тем самым меняется круговорот воды. В руках человека концентрируются огромные запасы металлов, фосфатов, серы, синтезируются колоссальные количества азотсодержащих веществ для удобрения полей и т. д. Меняется обычный ход геохимических процессов. Глубокое изучение всех природных превращений веществ на Земле – необходимое условие рационального воздействия человека на среду его обитания и изменения природных условий в желаемом для него направлении.


3. Биологический круговорот веществ (в ц на 1 га) (по Л.Е. Родину и Н.И. Базилевич, 1965)

  Растительные сообщества     Органическое вещество Зольные элементы и азот Азот
Общая биомасса В т.ч. биомасса корней Ежегодный прирост Ежегодный опад Запасы орг. остатков в лесной подстилке/ степном войлоке В биомассе Ежегодно потребляется Ежегодный возврат с опадом Содержание в лесной подстилке / степном войлоке В биомассе Ежегодно потребляется Ежегодно возвращается % от суммы хим. элементов в опаде
                           
Арктические тундры           1,6 0,38 0,37 2,8 0,81 0,21 0,20  
Сосняки южной тайги           18,8 0,85 0,58 17,3 6,64 0,27 0,16  
Ельники южной тайги           27,0 1,55 1,20 13,0 7,20 0,41 0,35  
Березняки           21,0 3,80 2,90 16,0 8,75 1,50 0,90 30-40
Сфагновые болота         >1000 6,1 1,09 0,73 - 2,29 0,40 0,25  
Дубравы           58,0 3,40 2,55 8,0 11,50 0,95 0,57 19-26
Луговые степи           11,8 6,82 6,82 8,0 2,74 1,61 1,61 22-28
Сухие степи           3,5 1,61 1,61 0,7 1,03 0,45 0,45 17-36
Пустыни           1,85 0,59 0,59   0,61 0,18 0,18 24-31
Саванны сухие           9,78 3,19 3,12   2,38 0,81 0,80  
Субтропические леса           52,8 9,93 7,95 6,0 13,59 2,77 2,26  

 




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1071; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.