Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие принципы аналитической оптической спектроскопии




Явления, обусловленные волновой природой света

Явления, обусловленные волновой природой света, лежат в основе оптических методов анализа. Такие явления наблюдаются при взаимодействии света со всем веществом. В зависимости от используемого явления различают следующие методы (табл.4).

Таблица 4

Оптические методы анализа

Явление Название метода
Рассеяние света – случайное изменение направления распространения падающего света Турбидиметрия, нефелометрия
Преломление света на границе раздела двух прозрачных однородных сред Рефрактометрия
Отражение света от поверхности твёрдого образца Спектроскопия диффузного отражения
Дифракция – огибание препятствий световой волной Дифракционные методы

Окончание таблицы 4

Явление Название метода
Интерференция – явление, которое наблюдается при сложении когерентных световых волн (усиление волн в одних точках пространства и ослабление в других даёт интерференционную картину) Интерферометрия
Поляризация света, за счёт которой колебания световых волн происходят только в одной плоскости Поляриметрия

Частица вещества (атом, молекула) может находиться только в определённых энергетических состояниях. Переход частицы из одного состояния в другое сопровождается испусканием или поглощением кванта света – фотона:

Рис. 32. Энергетические уровни вещества.

Каждому переходу отвечает спектральная линия.

Спектральная линия – это совокупность всех фотонов одной частоты.

Не все переходы могут осуществляться. Часть их запрещена правилами отбора. Наиболее вероятны резонансные переходы. Им отвечают резонансные линии.

Резонансные переходы – это переходы с первого возбуждённого уровня на основной и наоборот, т. е. Е 1 ® Е 0 и Е 0 ® Е 1.

Основные характеристики спектральных линий:

1. Длина волны (λ) или частота (ν) линии – используются для качественного анализа, определяются энергией перехода:

где Δ Е – энергия перехода;

Ei и Ej – энергии исходного и конечного состояний частицы;

h – постоянная Планка;

с – скорость света.

В ультрафиолетовой (УФ) и видимой (vis) областях используют длину волны λ, нм, а в инфракрасной (ИК) – частоту ν. Нередко вместо частоты ν = с / λ используют волновое число:

Иногда его тоже называют «частота».

2. Интенсивность линии – используется для количественного анализа, определяется количеством лучистой энергии с частотой ν, испускаемой или поглощаемой частицей в единицу времени.

Совокупность спектральных линий, принадлежащих данной частице, составляет её спектр.

Классификация спектров

В зависимости от типа взаимодействия излучения с веществом различают спектры испускания и спектры поглощения.

Спектры испускания обусловлены переходами, при которых Ei > Ej. Виды спектров испускания:

§ эмиссионные спектры – испускаются термически возбуждёнными частицами;

§ спектры люминесценции – испускаются нетермически возбуждёнными частицами (под действием энергии электромагнитного излучения, электрического поля, энергии химической реакции и др.).

Спектры поглощения (абсорбционные спектры) обусловлены переходами, при которых Ei < Ej.

В зависимости от природы частиц спектры делят на атомные (линейчатые) и молекулярные (полосатые). В свою очередь, молекулярные спектры могут быть:

§ вращательными;

§ колебательными;

§ электронными.

Для целей анализа наиболее часто используют атомные эмиссионные и молекулярные абсорбционные спектры, поэтому в последующих разделах будут подробно рассмотрены вопросы их получения, регистрации и использования для качественного и количественного анализа.

2.2. Атомные эмиссионные спектры.
Эмиссионная фотометрия пламени




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1094; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.