Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Математические модели




Физические модели

Физика как наука о природе, изучающая простейшие, и вместе с тем, наиболее общие свойства материального мира, также базируется на теоретических моделях. Эти модели характеризуются определёнными понятиями и параметрами, которые называют физическими величинами.

Примеры физических понятий и величин: пространство, система отсчета, скорость, электрическое поле, влажность, время, импульс, температура.

При построении физической модели необходимо в системе материальных объектов выделить и описать физические тела, поля, условия движений, взаимодействий, ввести понятия характеризующие свойства объектов, и указать или сформулировать физические законы, описывающие связь между этими понятиями и взаимодействия между этими объектами.

В соответствии с этим при построении физической модели можно выделить 3 этапа:

Этап 1. Моделирование поля и вещества.

Примеры:

- тело – материальная точка;

- тело - абсолютно твёрдое;

- тело - идеально упругое.

- магнитное поле – однородное;

- электрическое поле – центрально симметричное;

- жидкость, текущая в трубе, – не сжимаемая и не имеет вязкости;

- газ в цилиндре – идеальный.

Этап 2. Моделирование условий движения и взаимодействий в рамках моделей поля и вещества.

Примеры:

- движение происходит в инерционной системе отсчета;

- трение отсутствует;

- тело движется прямолинейно и равноускоренно;

- деформации тела – линейно упругие.

Этап 3. Формулировка физических законов, описывающих состояние, движение и взаимодействие объектов, входящих в рассматриваемую физическую систему.

Примеры:

- движение тел подчиняется второму закону Ньютона;

- взаимодействие материальных точек подчиняется закону Всемирного тяготения;

- деформация тела подчиняется закону Гука;

- сила, действующая на движущиеся заряды, описывается законом Лоренца.

Таким образом, физическими моделями объекта или процесса будем называть теоретические модели, включающие в себя модели вещества и поля, а также закономерности условий движения и взаимодействий.

Построенные выше физические модели необходимо описать с помощью символов в виде математических формул и уравнений. Эти символы – параметры объектов (они же обозначают физические величины) – связаны между собой в виде выше сформулированных физических законов.

Совокупность формул и уравнений, устанавливающих связь между этими параметрами (физическими величинами) на основе законов физики и полученных в рамках выбранных физических моделей, будем называть математической моделью объекта или процесса.

Следовательно, о физических величинах можно говорить как о параметрах, характеризующих и качественно, и количественно построенные физические модели.

Процесс создания математической модели можно также разделить на 3 этапа:

Этап 1. Составление формул и уравнений, описывающих состояние, движение и взаимодействия объектов в рамках выбранных физических моделей.

Этап 2. Решение и исследование сугубо математических задач сформулированных на первом этапе. Основным вопросом здесь является решение так называемой прямой задачи, т.е. получение теоретических следствий и численных данных. На этом этапе важную роль играет математический аппарат и вычислительная техника (компьютер).

Этап 3. Выяснение того, согласуются ли результаты анализа и вычислений с результатами измерений в пределах точности последних. Отклонение результатов расчётов от результатов измерений свидетельствует:

- либо о неправильности применённых математических методов;

- либо о неверности принятой физической модели;

- либо о неверности процедуры измерений.

Выяснение источников ошибок требует большого искусства и высокой квалификации исследователя.

Бывает, что при построении математической модели некоторые её характеристики или связи между параметрами остаются неопределёнными вследствие ограниченности наших знаний о физических свойствах объекта. Например: иногда оказывается, что число уравнений, описывающих свойства объекта и связи между объектами, меньше числа параметров (физических величин), характеризующих объект. В этих случаях приходится вводить дополнительные уравнения, характеризующие объект и его свойства, иногда даже пытаются угадать эти свойства, для того, чтобы задача была решена, а результаты соответствовали результатам опытов в пределах заданной погрешности. Подобного образа задачи называются обратными.

 

 

Измерение включает в себя следующие понятия:

- объект измерения;

- цель измерения;

- условия измерения (совокупность влияющих величин, описывающих состояние окружающей среды и объектов);

- метод измерения, т.е. совокупность приёмов использования принципов и средств измерений (принцип измерения – совокупность физических явлений, положенных в основу измерения);

- методика измерения, т.е. установленная совокупность операций и правил, выполнение которых обеспечивает получение необходимых результатов в соответствии с данным методом.

- средства измерения:

▪ измерительные преобразователи,

▪ меры,

▪ измерительные приборы,

▪ измерительные установки,

▪ измерительные системы,

▪ измерительно-информационные системы;

- результаты измерений;

- погрешность измерений;

- понятия, характеризующие качество измерений:

достоверность (характеризуется доверительной вероятностью, т.е. вероятностью того, что истинное значение измеряемой величины находится в указанных пределах);

правильность (характеризуется значением систематической погрешности);

сходимость (близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами и средствами и в одних и тех же условиях; отражает влияние случайных погрешностей на результат);

воспроизводимость (близость друг к другу результатов измерений одной и той же величины, выполняемых в разных местах, разными




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 327; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.