Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Властивості визначеного інтеграла




І. Якщо , то

ІІ. Сталий множник можна виносити з-під знака визначеного інтеграла, тобто

ІІІ. Якщо та інтегровні на [ a; b ], то

IV. Якщо у визначеному інтегралі поміняти місцями межі інтегрування, то інтеграл змінить лише свій знак на протилежний, тобто

V. Визначений інтеграл з однаковими межами інтегрування дорівнює нулю

VI. Якщо — інтегровна в будь-якому із проміжків: [ a; b ], [ a; c ], [ с; b ], то

VII. Якщо і інтегровна для то

VIII. Якщо , — інтегровні та для то

IX. Якщо f (x) — інтегровна та для то

Доведення випливає як наслідок із властивостей І та VIII.

Х. Теорема 7 (про середнє).

Якщо функція — неперервна для то знайдеться така точка що:

(7.9)

Геометричний зміст теореми про середнє полягає в тому, що існує прямокутник із сторонами та b – a, який рівновеликий криволінійній трапеції аАВв за умови, що функція та неперервна на проміжку [ a; b ] (рис. 7.6).

 

Рис. 7.6.

Поняття визначеного інтеграла
зі змінною верхньою межею інтегрування, формула Ньютона—Лейбніца

Розглянемо інтеграл , який буде функцією від верхньої межі інтегрування. Змінній х надамо приросту , що зумовить приріст функції.

(рис. 7.7)

Рис. 7.7

Теорема 8. Якщо функція f (x) неперервна для будь-якого то похідна від інтеграла зі змінною верхньою межею інтегрування по цій межі дорівнює підінтегральній функції від верхньої межі інтегрування, тобто

(7.10)

Наслідки:

1. Визначений інтеграл зі змінною верхньою межею від функції є одна із первісних для .

2. Будь-яка неперервна функція на проміжку має на цьому проміжку первісну, яку, наприклад, завжди можна побудувати у вигляді визначеного інтеграла зі змінною верхньою межею, тобто

Приклад. Знайти .

l Функція — неперервна на проміжку тому

Теорема 9. (Ньютона—Лейбніца). Якщо функція — неперервна для то визначений інтеграл від функції на проміжку дорівнює приросту первісної функції на цьому проміжку, тобто

де (7.11)

Позначимо дію подвійної підстановки так: тоді зв’язок між визначеним та невизначеним інтегралами можна подати такою рівністю:

(7.12)

Наслідок. Для обчислення визначеного інтеграла достатньо знайти одну із первісних підінтегральних функцій і виконати над нею подвійну підстановку.

Приклад.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1290; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.052 сек.