Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Строение, свойства и биологические функции нуклеотидов




Наряду с аминокислотами важнейшей группой азотистых веществ являются нуклеотиды. Их биологическое значение для жизнедеятельности организмов определяется тем, что они используются для построения молекул нуклеиновых кислот - дезоксирибонуклеиновой (ДНК) и рибонук-леиновой (РНК), входят в состав каталитических центров ферментов, участвуют в биоэнергетических процессах и синтезе углеводов, липидов, белков, алкалоидов и других веществ. Некоторые нуклеотиды способны выполнять регуляторные функции.

Главные структурные компоненты нуклеотидов–азотистые основания, пентозы (рибоза или дезоксирибоза) и остаток ортофосфорной кислоты. В зависимости от углеводного компонента различают две группы нук-леотидов: рибонуклеотиды, содержащие остаток рибозы, и дезоксирибо-нуклеотиды, имеющие в своем составе остаток дезоксирибозы. Дезоксирибонуклеотиды используются организмами для синтеза ДНК, а рибонуклетиды входят в состав РНК, ферментов и макроэргических нук-леозидполифосфатов.

Рибоза и дезоксирибоза в составе нуклеотидов находятся в b-D-фура-нозной форме:

Нуклеотиды образуются из двух типов азотистых оснований – произ-водных пиримидина и пурина. Свойства оснований они проявляют в водном растворе при взаимодействии с молекулами воды. Из пиримидиновых осно-ваний наиболее важное значение имеют урацил, тимин и цитозин как основные структурные единицы нуклеотидов, образующих нуклеиновые кислоты. Кроме них, известны и другие основания - 5-метилцитозин, псевдоурацил, 5-оксиметилцитозин и др. 5-Метилцитозин и 5-оксиметилцитозин в небольшом количестве могут

 

 

содержаться в составе нуклеотидов ДНК и РНК, псевдоурацил - в транспортной РНК.

Из пуриновых оснований наибольшее значение имеют аденин и гуанин, так как они используются для синтеза нуклеиновых кислот. В составе нуклеиновых кислот в небольшом количестве обнаружены также и другие основания, которые образуются в результате химической модификации аденина и гуанина: 7-метилгуанин, 2-метиладенин, N-диметилгуанин и др. Важными промежуточными метаболитами являются гипоксантин, ксантин, аллантоин. В некоторых растениях они могут накапливаться в свободном состоянии.

Все азотистые основания интенсивно поглощают ультрафиолетовый свет при длинах волн 200-280нм.

При соединении азотистых оснований с молекулой рибозы или дезоксирибозы образуются соединения, называемые нуклеозидами, так как между пентозой и основанием возникает гликозидная связь. Основания в данном случае можно рассматривать как агликоны по отношению к пентозе.

В нуклеозидах гликозидная связь возникает между первым углеродным атомом пентозы в b-фуранозной форме и азотом пуринового (в девятом положении) или пиримидинового (в первом положении) основания. Азотистые основания аденин, гуанин, цитозин и урацил образуют при со-единении с рибозой нуклеозиды - аденозин, гуанозин, цитидин и уридин,

 

а с дезоксирибозой – дезоксиаденозин, дезоксигуанозин, дезоксицитидин, дезоксиуридин. Тимин, соединяясь с дезоксирибозой, даёт дезоксити-мидин.

Азотистые основания и нуклеозиды могут накапливаться в растениях в значительном количестве при интенсивном распаде нуклеиновых кислот.

Фосфорнокислые эфиры нуклеозидов называют нуклеотидами. В составе нуклеотидов остатки ортофосфорной кислоты могут присоединяться к пятому или третьему атомам углерода рибозы или дезоксирибозы, а у некоторых рибонуклеотидов ещё и ко второму атому углерода рибозы. У свободных нуклеотидов фосфатная группа обычно находится у пятого углеродного атома рибозы или дезоксирибозы. В нейтральной среде остатки ортофосфорной кислоты в молекулах нуклеотидов сильно диссоциированы, вследствие чего могут присоединять катионы, поэтому при химическом выделении нуклеотиды кристаллизуются в виде солей.

Изучение пространственной структуры азотистых оснований методом рентгеноструктурного анализа показывает, что все они имеют почти плоскую конформацию. У них довольно легко происходит перегруппировка двойных связей, которая сопровождается таутомерными превращениями. Например, гуанин может существовать в виде двух таутомерных форм:

Плоскость гетероциклического ядра основания в структуре нуклеозидов и нуклеотидов может занимать в пространстве два положения по отношению к пентозе, образуя две противоположные конформации - син -конформацию и анти -конформацию. В анти -конформации структура азотистого основания развернута от пентозы, а в син -конформации ориентирована над её плоскостью. В свободном состоянии пиримидиновые нуклеотиды находятся преимущественно в анти -конформации, а пуриновые довольно легко переходят из одной формы в другую.

В связи с тем, что у нуклеотидов сильно выражены кислотные свойства, их называют кислотами с учетом названий азотистых оснований и углеводного компонента. Так, например, рибонуклеотид, имеющий остаток аденина, называют адениловой кислотой, или аденозинмонофосфатом (АМФ). Дезоксирибонуклеотид, образованный из тимина, называют дезокситимидиловой кислотой, или дезокситимидинмонофосфатом (дТМФ). Названия других нуклеотидов представлены в таблице 2.

В растениях найдены циклические формы нуклеотидов – адено-зинмонофосфата и гуанозинмонофосфата, которые по-видимому выполняют регуляторные функции. Строение циклического АМФ можно представить слудующей формулой:

2. Названия важнейших нуклеотидов.

Азотистые основания Рибонуклеотиды Сокращён- ное обо- значение Дезоксирибонук- Леотиды Сокращён- ное обо- значение
Аденин Адениловая кислота, аде-нозинмонофосфат АМФ дезоксиаденило- вая кислота, дезоксиадено- зинмонофосфат дАМФ
Гуанин Гуаниловая кислота, гуа- нозинмонофосфат ГМФ дезоксигуанило- вая кислота, дезоксигуано- зинмонофосфат ДГМФ
Цитозин Цитидиловая кислота,цити-динмонофосфат ЦМФ дезоксицитиди- ловая кислота, дезоксицитидин- монофосфат ДЦМФ
Урацил Уридиловая кислота, ури- динмонофосфат УМФ    
Тимин     дезокситимиди- ловая кислота, дезокситимидин- монофосфат ДТМФ
Гипоксан- тин инозиновая кислота, ино- зинмонофосфат ИМФ    

 

Путём фосфорилирования нуклеотиды превращаются в более активные формы - нуклезиддифосфаты и нуклеозидтрифосфаты, в виде которых, как мы увидим далее, они участвуют в различных биохимических процессах – синтезе нуклеиновых кислот, сложных углеводов и липидов, коферментов и витаминов, запасании и переносе энергии.

Из адениловой кислоты образуются аденозинди- и аденозинтрифосфат (АДФ и АТФ), из гуаниловой кислоты - гуанозинди- и гуанозинтрифосфат (ГДФ и ГТФ), из цитидиловой кислоты - цитидинди- и цитидинтрифосфат (ЦДФ и ЦТФ), из уридиловой кислоты - уридинди- и уридинтрифосфат (УДФ и УТФ), из инозиновой кислоты – инозинди- и инозинтрифосфат (ИДФ и ИТФ). Из дезоксирибонуклеотидов также синтезируются соответствующие ди- и трифосфаты: дезоксиаденозинди- и дезоксиаденозинтрифосфат (дАДФ и дАТФ), дезоксигуанозинди- и дезоксигуанозинтрифосфат (дГДФ и дГТФ), дезоксицитидинди- и дезоксицитидинтрифосфат (дЦДФ и дЦТФ), де-зокситимидинди- и дезокситимидинтрифосфат (дТДФ и дТТФ). Строение ди- и трифосфатов нуклеозидов можно представить следующими формулами:

Свободные нуклеотиды содержатся во всех растительных клетках. Они возникают или в процессе активного синтеза азотистых веществ, или в результате распада нуклеиновых кислот, который может интенсивно происходить при неблагоприятных условиях произрастания, а также при хранении и переработке растительных продуктов. Так, например, при разваривании клубней картофеля образующиеся в результате распада нуклеиновых кислот свободные нуклеотиды оказывают влияние на формирование вкусовых качеств варёного картофеля.

По интенсивности образования различных фракций нуклеотидов можно судить о направленности биохимических процессов в организме. Если в клетках и тканях организма повышается содержание трифосфатпроизводных нуклеотидов, то это свидетельствует об активизации его жизнедеятельности, тогда как накопление монофосфатов наблюдается при усилении процессов распада веществ, характерных для стареющего организма.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 3204; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.