Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Возрастные особенности развития количественных представлений у детей

Разбиение множества на классы

Отношения эквивалентности и порядка

Любое отношение не может быть одновременно симметричным и антисимметричным, рефлексивным и антирефлексивным, но существуют отношения, которые могут быть одновременно рефлексивными, симметричными, транзитивными.

Определение. Отношение a называется отношением эквивалентности, если оно одновременно является рефлексивным, симметричным, транзитивным.

Отношения, которые близки по смыслу слову «равный» являются эквивалентными. Например, отношение равенства между числами или «быть одинаковой формы» между фигурами.

Определение. Отношение a называется отношением порядка, если оно одновременно является антирефлексивным, антисимметричным, транзитивным.

Множество, на котором задано отношение порядка, называется упорядоченны м.

Все отношения, близкие по смыслу отношению «следовать за» являются отношениями порядка. Например, отношение «<» на множестве чисел («выше» на множестве людей).

Пример: рассмотрим множество М– множество разноцветных фигур; подмножество А – множество красных фигур, В – не красные фигуры. А Ì М, В = М \ А, В Ì М М

 

 

Подмножества А и В не являются пустыми. Они не пересекаются, и объединение их есть М.

При выполнении этих условий мы говорим, что множество М разбито на 2 класса: красных фигур и не красных

Общее определение. Говорят, что множество М разбито на классы (попарно не пересекающиеся подмножества) если выполнены 3 условия: все подмножества множества М не пусты, все подмножества множества М не пересекаются, объединение всех подмножеств множества М есть само множество М.

Разбиение множества на классы лежит в основе операции классификации.

Всякое отношение эквивалентности разбивает множества на классы и наоборот, разбиение множества на классы определяет отношение эквивалентности.

Если отношение не является отношением эквивалентности, то оно не разбивает множество на классы.


Возрастные особенности развития математических представлений у детей дошкольного возраста будем рассматривать в соответствии с исследованиями А.М. Леушиной.

<== предыдущая лекция | следующая лекция ==>
Отношения между элементами множества. Свойства отношений | Представления о множестве объектов
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 461; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.