Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие технологичности




При проектировании сварных заготовок следует учитывать требования к технологичности их изготовления. Под технологичностью понимают выбор такого конструктивного оформления заготовок, которое обеспечивает удобство и простоту изготовления любыми видами сварки и при различных режимах; применение высоко-производительных видов сварки: автоматизацию и механизацию максимального числа операций технологического процесса; низкую себестоимость процесса сварки за счет экономии сварочных материалов, повышения производительности и высокого уровня механизации; сведения к минимуму искажений формы, вызываемых тепловым и механическим воздействиями при сварке.

Технологичность обеспечивается выбором металла, формы свариваемых элементов и типа соединения, видов сварки и мероприятий по уменьшению сварочных деформаций и напряжений.

ВЫБОР МЕТАЛЛА

При выборе металла для сварочных заготовок необходимо учитывать не только его эксплуатационные свойства, но и его свариваемость или возможность применения технологических мероприятий, обеспечивающих хорошую свариваемость. В процессе сварки металл подвергается термическим, химическим и механическим воздействиям. В связи с этим в различных зонах основного металла, расположенного вблизи шва, изменяются его состав, структура и свойства. Следовательно, механические и эксплуатационные свойства металла в зоне сварного соединения могут быть неравноценны таким же свойствам основного металла.

Для получения сварных соединений, равноценных по работоспособности основному металлу, при конструировании сварных заготовок следует по возможности выбирать хорошо свариваемые металлы. К таким металлам относятся спокойные низкоуглеродистые стали и многие низколегированные стали, ряд сплавов цветных металлов, применение которых не ограничивается какими-либо требованиями к виду и режимам сварки.

При применении в связи с эксплуатационной необходимостью металлов с пониженной свариваемостью конструировать необходимо с учетом этого свойства. Для сведения к минимуму неблагоприятных изменений свойств металла сварного соединения и исключения в нем дефектов необходимо применять виды и режимы сварки, оказывающие минимальное термическое и другие воздействия на металл, и проводить технологические мероприятия (подогрев, искусственное охлаждение и др.), снижающие влияние на него сварочных воздействий. Термическая обработка после сварки (нормализация, закалка с отпуском и др.) может в значительной степени устранять неоднородность свойств в сварных заготовках. Прочность зоны сварного со­единения может быть повышена механической обработкой после сварки: прокаткой, проковкой и др.

Проведение этих мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок. Для сложных заготовок с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положениях можно применять только хорошо свариваемые металлы. Последние сваривают универсальными видами сварки, например ручной дуговой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная ввиду отсутствия печей и закалочных ванн соответствующего размера. Для простых малогабаритных узлов возможно применение металлов с пониженной свариваемостью, поскольку при их изготовлении используют самые оптимальные с точки зрения свариваемости виды сварки, например электронно-лучевую или диффузионную в вакууме. При этом легко осуществить все необходимые технологические мероприятия и требуемую термическую или механическую обработку после сварки.

ВЫБОР ТИПА СВАРНОГО СОЕДИНЕНИЯ

Тип сварного соединения определяют взаимным расположением свариваемых элементов и формой подготовки (разделки) их кромок под сварку (рис. 10). По первому признаку различают четыре основных типа сварных соединений: стыковые, тавровые, нахлесточные и угловые. Кромки разделывают в целях полного провара заготовок по сечению, что является одним из условий равнопрочности сварного соединения с основным металлом. Форму и размеры элементов разделки (угол, притупление и зазоры) назначают, исходя из условий проплавления, обеспечения формирования корня шва (без непроваров и прожогов) и минимального объема наплавленного металла.

Тип сварного соединения наряду с общими конструктивными соображениями выбирают с учетом обеспечения равнопрочности соединения с основным металлом и технологичности. Выбор разделки кромок зависит от толщины металла, его теплофизических свойств и вида сварки.

Стыковые соединения элементов плоских и пространственных заготовок наиболее распространены. Соединения имеют высокую прочность при статических и динамических нагрузках. Их выполняют практически всеми видами термической и многими видами термомеханической сварки. Некоторая сложность применения сварки с повышенной тепловой мощностью (автоматической под флюсом, плазменной струей) связана с формированием корня шва. В этом случае для устранения сквозного прожога при конструировании соединений необходимо предусматривать съемные и остающиеся подкладки. Другой путь — применение двусторонней сварки, однако при этом необходимы кантовка заготовки и свободный подход к корневой части сварного соединения. При сварке элементов различных толщин кромку более толстого элемента выполняют со скосом для уравнивания толщин, что обеспечивает одинаковый нагрев кромок и исключает прожоги в более тонком элементе. Кроме того, такая форма соединения работоспособнее вследствие равномерного распределения деформаций и напряжений.

Тавровые соединения широко применяют при изготовлении пространственных заготовок. Соединения с односторонней и двусторонней разделками кромок, выполненные с полным проваром, имеют высокую прочность при любых нагрузках. Тавровые соединения выполняют всеми видами термической сварки. Виды термомеханической сварки для тавровых соединений применяют редко (приварка стержня к пластине стыковой контактной сваркой оплавлением и сваркой трением и т. п.).

Нахлесточные соединения часто применяют для сварки листовых заготовок при необходимости простой подготовки и сборки под сварку. Эти соединения, выполненные термической сваркой, менее прочны по сравнению со стыковыми соединениями. Они не эконо­мичны вследствие перерасхода основного металла, обусловленного наличием перекрытия свариваемых элементов и наплавленного металла в связи с выполнением двух угловых швов. В то же время нахлесточное соединение — основное соединение тонколистовых элементов при термомеханической сварке, особенно при точечной и шовной контактной сварке. В данном случае оно наиболее технологично, так как удобно для двустороннего и одностороннего подвода электродов перпендикулярно к поверхности металла. Точечные соединения часто играют роль связующих соединений и рабочих усилий не пере­дают (точечные соединения сварных профилей при нагружении продольным усилием, соединения обшивок с каркасами и т. д.). Шовные соединения, как правило, несут рабочие нагрузки, но их прочность меньше, чем стыковых, выполненных термической сваркой. Это обусловлено дополнительным изгибом при осевом нагружении и концентрацией напряжений вследствие зазора между эле­ментами.

Угловые соединения, как правило, выполняют в качестве связующих. Они не предназначены для передачи рабочих усилий. Их выполняют всеми видами термической сварки.

Рисунок 10. Типы сварных соединений, применяемых при основных способах сварки плавлением и давлением

ВЫБОР ФОРМЫ СВАРИВАЕМЫХ ЭЛЕМЕНТОВ

Сварные заготовки изготовляют из проката: листа, труб, профилей, а также из литых, кованых и штампованных элементов. При конструировании размеры и форму свариваемых элементов с точки зрения их технологичности следует выбирать, исходя из применения высокопроизводительных автоматических способов сварки; выполнения сварки в нижнем положении; свободного доступа к лицевой и корневой частям шва; проведения при необходимости подогрева (или охлаждения) и последующей термической или механической обработки; сведения к минимуму длины сварных швов и массы основного и наплавленного металлов и т. д.

Указанным рекомендациям соответствуют элементы простой геометрической формы: прямолинейные, цилиндрические, конические и полусферические с длинными прямыми и замкнутыми кольцевыми стыковыми и тавровыми соединениями. При выборе сортамента материалов для изготовления элементов предпочтительнее прокатные, гнутые или штамповочные профили и оболочки, тонкий лист и тонкостенные трубы и их сочетания.

ВЫБОР ВИДА СВАРКИ

Вид сварки выбирают, исходя из размера и формы соединяемых заготовок; расположения швов в сварном соединении; физико-химических свойств, соединяемых материалов; возможности механизации и автоматизации процесса сварки. Так, например, для сварки листовых конструкций из всех марок сталей и некоторых цветных сплавов широко применяют дуговую и электрошлаковую сварку. Для получения стыковых соединений заготовок компактных, полых и развитых сечений из сталей и цветных металлов применяют контактную стыковую сварку. В производстве тонколистовых конструкций из сталей и цветных металлов для нахлесточных соединений наиболее распространены точечная и шовная контактная сварка. В том случае, когда желательно ограничить температуру нагрева материала в зоне соединения, применяют холодную и ультразвуковую сварку.

Дополнение.

 

СВАРКА РАЗЛИЧНЫХ МЕТАЛЛОВ И СПЛАВОВ

СВАРКА УГЛЕРОДИСТЫХ И ЛЕГИРОВАННЫХ СТАЛЕЙ

Низкоуглеродистые и низколегированные стали обладают хорошей свариваемостью и соединяются большинством способов сварки без особых трудностей.

Углеродистые и легированные стали с содержанием углерода более 0,3 % (стали 45, 30ХГСА, 40ХНМА и др.) при типовых режимах сварки претерпевают закалку в з. т. в.

Соответствующие этим режимам скорости охлаждения для указанных сталей достаточно высоки и приводят к образованию мартенситной микроструктуры. Поэтому для сварных соединений этих сталей характерны повышенная твердость и пониженная пластич­ность в з. т. в.

В жестких сварных узлах, в которых образуются высокие сва­рочные напряжения, в закаленной з. т. в. возможно образование холодных трещин. Склонность к холодным трещинам повышается при насыщении металла водородом, который снижает пластичность закаленного металла. Источником водорода служит влага в покры­тиях электродов, флюсах и защитных газах, которая разлагается в дуге, и атомарный водород насыщает жидкий металл сварочной ванны. В результате диффузии водорода им насыщается также з. т. в.

Для обеспечения хорошей свариваемости при дуговой сварке этих сталей рекомендуют следующие технологические мероприятия: предварительный и последующий подогрев заготовок до температуры 100—300 °С в целях замедленного охлаждения и исключения закалки з. т. в.; прокалка электродов, флюсов при температуре 400—450 °С в течение 3 ч и осушение защитных газов для предупреждения попадания водорода в металл сварного соединения; низкий (300—400 °С) или высокий (600—700 °С) отпуск сварных соединений сразу после окончания сварки в целях повышения пластичности закалочных структур и удаления водорода.

Контактную точечную сварку углеродистых и легированных сталей выполняют на мягких режимах, т. е. длительным нагревом током и быстрым удалением заготовок из машины для избегания отвода теплоты электродами. В результате обеспечивается замедленное охлаждение заготовок. Контактную стыковую сварку этих сталей выполняют с прерывистым оплавлением, при котором обеспечиваются подогрев заготовок перед сваркой и замедленное охлаждение.

СВАРКА ВЫСОКОЛЕГИРОВАННЫХ КОРРОЗИОННО-СТОЙКИХ СТАЛЕЙ

Коррозионная стойкость стали обеспечивается содержанием более 12 % Сr, а содержание 8 % Ni стабилизирует аустенитную структуру и сохраняет ее при нормальных температурах (сталь 10Х18Н9Т и др.). При сварке этих сталей на режимах, обусловливающих продолжительное пребывание металла в области температур 500—800 °С, возможна потеря коррозионной стойкости металлом шва и з. т. в. Причиной этого является образование карбидов хрома на границах зерен и обеднение приграничных участков зерен хромом. В результате металл сварного соединения становится склонным к так называемой межкристаллитной коррозии.

При дуговой сварке для предупреждения межкристаллитной коррозии сварных соединений рекомендуются сварка на малых погонных энергиях (q/v, Дж/см) с применением теплоотводящих медных подкладок в целях получения жестких термических циклов и уменьшения времени пребывания металла при высоких температурах; термическая обработка после сварки: нагрев до температуры 1100 °С и закалка в воду. При нагреве происходит растворение карбидов, а закалка фиксирует чисто аустенитную структуру.

При дуговой сварке аустенитных сталей возможно образование в сварных швах горячих трещин. Они обусловлены широким интервалом кристаллизации вследствие повышенного содержания легирующих элементов и наличия вредных примесей (S). Образованию трещин способствует также крупнозернистая столбчатая макрострук­тура шва, при которой его кристаллизация завершается при наличии жидких прослоек большой протяженности.

Для предупреждения возникновения горячих трещин в сварных швах рекомендуется вводить в сварочные материалы (электроды, проволоку) легирующие элементы Si, Al, Mo, Mn и другие способствующие измельчению зерна, и снижать содержание вредных примесей.

Аустенитные стали хорошо свариваются контактной сваркой. Сварку ведут на пониженных плотностях тока. Эти стали имеют высокое удельное электросопротивление и низкую теплопроводность, что обусловливает выделение большого количества теплоты при сварке и ограниченный его отвод из зоны сварного соединения. При этом применяют повышенное давление, поскольку аустенитные стали имеют значительную прочность при высоких температурах,

СВАРКА ЧУГУНА

Чугун относится к категории плохо сваривающихся сплавов. Его сваривают при исправлении дефектов в отливках и ремонте деталей. Дуговая сварка чугуна чугунными электродами и с покрытиями не обеспечивает хорошего качества сварных соединений. Металл шва получает структуру белого чугуна, а зона термического влияния закаливается.

Горячую сварку чугуна выполняют с предварительным подогревом свариваемых деталей до температуры 400—700 °С. Детали подогревают в печах. Перед сваркой в деталях вырубают дефектные места и разделывают кромки, которые затем заформовывают с помощью графитных пластин и кварцевого песка, замешанного на жидком стекле. Сваривают чугунными электродами (диаметром 8 — 25 мм) со стабилизирующей или специальной обмазкой. Сваренные детали охлаждают вместе с печью. При горячей сварке чугуна получают сварное соединение без твердых отбеленных и закаленных участков. Однако горячая сварка — дорогой и трудоемкий процесс; ее применяют для ремонта уникальных деталей. Горячую сварку также выполняют науглероживающим газовым пламенем с флюсом на основе буры (Na2B4O7).

При холодной сварке чугун сваривают без подогрева стальными, медножелезными, медноникелевыми электродами и электродами из аустенитного чугуна. В случае применения стальных электродов валики наплавляют низкоуглеродистыми электродами небольшого диаметра со стабилизирующей или качественной обмазкой. Применяют также стальные электроды со специальным покрытием, содержащим большое количество карбидообразующих элементов, дающим наплавленный металл с мягкой основой и вкраплениями карбидов. Эти способы не исключают образования отбеленных и закалочных структур в з. т. в., но они просты и обеспечивают мягкий хорошо обрабатываемый шов.

Медно-железные электроды состоят из медного прутка с оплет­кой из жести или пучка из медных и стальных стержней, Электроды имеют специальное или стабилизирующее покрытие. Медно-никелевые электроды состоят из стержней монель-металла (70 % Ni, 28 % Сu и остальное Fe) или мельхиора (80 % Сu, 20 % Ni) со стабилизирующей обмазкой. Применение медно-железных и медно-никелевых электродов позволяет получить сварное соединение, у которого отбеливание в з. т. в. наблюдается только на отдельных участках. Наибольшее применение имеют медно-железные электроды, как более дешевые и обеспечивающие достаточную прочность металла шва.

СВАРКА МЕДИ И ЕЕ СПЛАВОВ

На свариваемость меди большое влияние оказывают содержащиеся в ней вредные примеси (О2, Н2, Bi, Pb и др.). Кислород, находящийся в меди в виде оксида Сu2О, является одной из причин образования горячих трещин в сварных швах. Двуоксид меди образует с медью легкоплавкую эвтектику (Сu2О—Сu), которая располагается по границам кристаллитов и снижает температуру их затвердевания. Такое же действие оказывают Bi и РЬ. Наличие сетки эвтектики по границам кристаллитов делает шов более хрупким при нормальных температурах.

В расплавленной меди водород имеет высокую растворимость, которая резко понижается при кристаллизации. Выделение водо­рода при затвердевании сварочной ванны может привести к образованию газовой пористости. Водород, оставшийся в растворенном состоянии в твердом металле, вступает в реакцию с двуоксидом меди, в результате чего выделяются водяные пары (Н2О). Последние не растворяются в меди и скапливаются под высоким давлением в микропустотах, что приводит к так называемой водородной хрупкости. Водородная хрупкость может привести к образованию трещин в твердом металле в процессе охлаждения.

Для предотвращения указанных дефектов при дуговой сварке меди рекомендуются Сварка в атмосфере защитных газов (аргона, гелия, азота и их смесей); применение сварочной и присадочной проволок, содержащих сильные раскислители (титан, цирконий, бор, фосфор, кремний и др.).

Поскольку медь обладает высокой теплопроводностью сварку ее выполняют на повышенной погонной энергии q/v, а при толщине более 4 мм —с предварительным подогревом до температуры 300 °С. Медь большой толщины (свыше 30 мм) сваривают плазменной сваркой. В единичном производстве и для ремонтных работ применяют газовую сварку мощным пламенем. При этом обеспечивается необходимый подогрев заготовок. Сварку выполняют с флюсом на основе буры, который наносят на кромки заготовок и на присадочный пруток. Флюс растворяет Сu2О и выводит его в шлак. Медь толщиной более 50 мм сваривают электрошлаковой сваркой.

Основная трудность при сварке латуней — испарение цинка. В результате снижается прочность и коррозионная стойкость латунных швов. Пары цинка ядовиты, поэтому необходима интенсивная вентиляция или сварщики должны работать в специальных масках. При сварке в защитных газах преимущественно применяют сварку неплавящимся вольфрамовым электродом, так как при этом происходит меньшее испарение цинка, чем при использовании плавящегося электрода. При газовой сварке лучшие результаты получают при применении газового флюса Образующийся на поверхности сварочной ванны борный ангидрид (В2О3) связывает пары цинка в шлак. Сплошной слой шлака препятствует выходу паров цинка из сварочной ванны. Латунь обладает меньшей теплопроводностью, чем медь, поэтому для металла толщиной свыше 12 мм необходим подогрев до температуры 150 °С.

Для сварки бронзы применяют те же способы и технологию, что и для сварки меди, за исключением оловянных бронз. Их сваривают с большой скоростью и без подогрева, так как в противном случае возможно выплавление легкоплавкой составляющей — олова.

Латуни и бронзы имеют более высокое удельное электросопротивление, чем медь, и они достаточно хорошо свариваются контактной сваркой. Медь контактной сваркой не сваривается.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 609; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.035 сек.