Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Взаимосвязь показателей вариации

В нормальном ряду распределения между показателями вариации имеются следующие примерные соотношения:

5.3. Основные свойства дисперсии

1) Если все значения признака уменьшить или увеличить на какое-то постоянное число а, то дисперсия не изменится.

2) Если все значения признака уменьшить или увеличить в К раз, то дисперсия изменится в К 2 раз.

3) Сумма квадратов отклонений индивидуальных значений признака x от их средней меньше суммы квадратов отклонений индивидуальных значений признака от любого числа а, при условии, что

.

4) Дисперсия признака равна разности между средним квадратом значения признака и квадратом их средней:

.

Дисперсия альтернативного признака

В ряде случаев возникает необходимость измерить вариацию альтернативного признака, то есть такого, который может принимать только два значения. Обозначив отсутствие интересующего нас признака через 0, его наличие через 1, долю единиц, обладающих данным признаком - через р, не обладающих — через q, дисперсию этого признака можно определить как

Например, если 64% работников предприятия имеют высшее образование р, то дисперсия будет равна:

.

5.4. Правило сложения дисперсий

На вариацию признака влияют различные причины и факторы, которые делятся на случайные и систематические. Поэтому и вариация может быть случайной, вызванной действием случайных причин и систематической, обусловленной воздействием постоянных причин и факторов. В связи с этим возникает необходимость в определении случайной систематической составляющей и её роли в общей вариации. Общую дисперсию мы уже рассматривали. Она характеризует общую вариацию признака под влиянием всех условий, всех причин, вызывающих эту вариацию и исчисляется по формуле:

Для определения влияния постоянного фактора на величину вариации пользуются аналитической группировкой. Вариация, обусловленная фактором, положенным в основание группировки, называется межгрупповой вариацией. Размеры ее определяются при помощи дисперсии групповых средних или межгрупповой дисперсии, которая характеризует колеблемость групповых или частных средних около их общей средней:

,

где - средняя по каждой отдельной группе; - средняя по всей совокупности; n - число единиц совокупности; f - частоты или веса.

Таким образом, межгрупповая дисперсия (дисперсия групповых средних) равна средней арифметической из квадратов отклонений частных средних от общей средней. Она характеризует систематическую вариацию, которая возникает под влиянием фактора, признака, положенного в основание группировки.

Для определения влияния случайных факторов и их роли в общей вариации определяют дисперсию в пределах каждой группы, т.е. внутригрупповую дисперсию, а затем и среднюю из внутригрупповых дисперсий:

где x - индивидуальные значения признака; - групповые или частные средние:

В математической статистике доказано, что общая дисперсия признака равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий

Это правило называется правилом сложения дисперсий.

5.5. Ряды распределения и их моделирование

а) Моменты распределения

Одной из важных задач анализов рядов распределения является выявление закономерности распределения, определение ее характера и количественного выражения. Эта задача решается при помощи показателей, характеризующих форму, тип распределения.

Кроме рассмотренных выше важной характеристикой рядов распределения являются моменты распределения.

Моментом распределенияк) называется средняя арифметическая из отклонений значений признака x от некоторой постоянной величины а в степени к:

Величина к определяет порядок момента. В зависимости от величины а различают начальные, центральные и условные моменты (табл. 5.2)


Таблица 5.2

Значение моментов распределения

Величина Название момента Обозначение момента Величина момента  
      к =0 к =1 к =2
    начальный   М      
    центральный   m       σ
а   условный М

 

Условные моменты используются для определения дисперсий высоких степеней. Практически используются моменты первых четырех порядков. Если в качестве весов взять не частоты, а вероятности, то получим теоретические моменты распределения.

б) Кривые распределения

Для обобщенной характеристики особенностей формы распределения применяются кривые распределения, которые выражают закономерность распределения единиц совокупности по величине варьирующего признака.

Эмпирическая кривая - это фактическая кривая, полученная по данным наблюдения, в которой отражаются как общие, так и случайные условия, определяющие распределение (кривая 1, рис.5.3)

Теоретическая кривая распределения - это кривая, выражающая функциональную связь между изменением варьирующего признака и изменением частот и характеризующая определенный тип распределения (кривая 2, рис.5.3).

По форме кривые распределения бывают симметричными и асимметричными. В зависимости от того, какая ветвь кривой вытянута, различают правостороннюю асимметрию и левостороннюю асимметрию (рис.5.1). Кривые распределения также могут иметь различную островершинность (рис.5.2).

Для характеристики степени асимметрии кривой используют коэффициент асимметрии, который представляет собой отношение центрального момента третьего порядка к среднему квадратическому отклонению в кубе

.

Если А > 0, то асимметрия правосторонняя, а если А < 0, то асимметрия левосторонняя, в симметричном распределении - А = 0. Кроме этого коэффициента для характеристики асимметрии применяют и соотношение между и модой или медианой по отношению к среднеквадратическому отклонению

.

Он менее точен по сравнению с коэффициентом асимметрии и применяется реже.

Для характеристики островершинности кривой распределения применяют коэффициент эксцесса, который равен отношению центрального момента четвертого порядка к дисперсии в квадрате

.

В нормальном распределении Е =3, поэтому, если Е >3, то эксцесс выше нормального (островершинная кривая), Е <3, эксцесс ниже нормального (плосковершинная кривая).

в) Моделирование рядов распределения

Все рассмотренные выше показатели характеризуют отдельные свойства совокупности. Общую характеристику ряда распределения можно представить аналитически, в виде функции, характеризующей зависимость между изменениями признака и частотами. Если имеется эмпирический ряд распределения, то необходимо найти функцию распределения, т. е. подобрать такую теоретическую кривую, которая наиболее полно бы раскрывала закономерность распределения. Нахождение функции кривой распределения называется моделированием.

Для аппроксимации (выравнивания) эмпирических кривых распределения в статистике часто пользуются нормальным распределением, функция которого

,

где F (x) - интегральная функция распределения; t - нормированное отклонение; e - основание натуральных логарифмов.

Теоретическое распределение вероятностей и частот дает представление о форме, типе распределения, о закономерности, свойственной изучаемому явлению.

>Ме>Мо =Ме=Мо <Ме<Мо

Правосторонняя Симметричная Левосторонняя

Асимметрия кривая асимметрия

 
 

Рис.5.1. Типы кривых распределения (по асимметрии)

 

 
 

Рис. 5.2. Типы кривых распределения (по островершинности)

 

Эмпирическое и теоретическое распределение рабочих по степени выполнения норм приведено в табл.5.3 и на рис.5.3.

 

 

Таблица 5.3

Распределение рабочих по степени выполнения норм выработки

Группы рабочих по степени выполнения норм,% Число рабочих (эмпирические частоты) (f) Теоретические частоты (f’)
до 100    
100-110    
110-120    
120-130    
130-140    
140-150    
150 и выше    
Итого:    

г) критерии согласия

Для оценки близости эмпирического и теоретического распределения используются специальные показатели, которые называются критериями согласия. Критерии согласия как правило тем или иным способом оценивают степень расхождения между эмпирическими и теоретическими частотами.

Наиболее часто используется критерий, который называется хи-квадрат Пирсона и рассчитывается

,

где f’ -теоретические частоты, f -эмпирические частоты.

Чем меньше значение , тем лучше теоретическое распределение отражает реальное положение в совокупности и наоборот. Если =0, то расхождение между f и f’ отсутствует.

Для проверки согласия с помощью рассчитанное значение сравнивают с табличным и при условии < можно с определенной вероятностью сказать, что расхождение теоретического и эмпирического распределения случайно, и наоборот.

Также применяется и критерий согласия Колмогорова , который равен

,

где D - максимальная разность накопленных частот (без учета знака), n - объем совокупности.

Вычислив фактический критерий, по специальной таблице находят вероятность достижения критерием этого значения. Если вероятность значительна, то расхождение между эмпирическим и теоретическим распределением можно считать случайным.

В явлениях общественной жизни асимметричные распределения встречаются гораздо чаще, чем симметричные. Некоторые асимметричные распределения могут быть приведены к симметричному путем преобразования признака Х, например логарифмированием. В этом случае распределение называется логарифмически нормальным. Такое преобразование производится, как правило, для сильно асимметричных распределений.

 

РАЗДЕЛ 6. ВЫБОРОЧНОЕ НАБЛЮДЕНИЕ

6.1. Общие сведения о выборочном наблюдении

В связи с тем, что статистика имеет дело с массовыми совокупностями статистические исследования весьма трудоемки. Поэтому давно возникла мысль о замене сплошного наблюдения выборочным.

Выборочное наблюдение - это наиболее совершенный способ несплошного наблюдения, при котором обследуется не вся совокупность, а лишь ее часть, отобранная по определенным правилам выборки и обеспечивающая получение данных, характеризующих всю совокупность в целом.

При проведении выборочного наблюдения нельзя получить абсолютно точные данные. Как при сплошном, так как при выборочном наблюдении неизбежны ошибки, которые делятся на ошибки регистрации и ошибки репрезентативности. В свою очередь, ошибки репрезентативности бывают случайные и систематические.

Важнейшим условием применения выборочного метода является правильный отбор единиц совокупности, а именно:

а) строго объективный отбор единиц совокупности, при котором каждая из них получала бы абсолютно одинаковую возможность попасть в выборку;

б) достаточное количество отобранных единиц совокупности. При соблюдении этих условий выборка будет репрезентативной или представительной.

Вся совокупность единиц, из которой производится отбор, называется генеральной совокупностью и обозначается буквой N. Часть генеральной совокупности, попавшая в выборку, называется выборочной совокупностью и обозначается n.

Обобщающие показатели генеральной совокупности - средняя, дисперсная и доля - называются генеральными и соответственно обозначается σ, р, где p - доля или отношение числа единиц совокупности М, обладающих данным признаком ко всей численности генеральной совокупности, т.е.. Те же обобщающие характеристики в выборочной совокупности обозначаются соответственно , 2, ω.

Теоретической основой выборочного метода является теорема П.Л.Чебышева, которая формулируется следующим образом: с вероятностью, сколь угодно близкой к единице (достоверности), можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии генеральной совокупности разность между выборочной средней и генеральной средней будет сколь угодно мала:

< ε.

При практическом использовании теоремы Чебышева генеральную дисперсию, которая неизвестна, заменяют выборочной дисперсией.

 

6.2. Виды и схемы отбора

Формирование выборочной совокупности из генеральной может осуществляться по-разному. Различают следующие виды отбора: собственно-случайный; механический; типический; серийный; комбинированный.

1. Собственно-случайный отбор. Он ориентирован на выборку единиц из генеральной совокупности без всякого расчленения ее на части или группы. Либо применяется жеребьевка, либо используются таблицы случайных чисел.

2. Механический отбор. Он состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы), причем все единицы генеральной совокупности должны располагаться в определенном порядке. Размер интервала или группы равен обратной величине доли выборки (или количеству отбираемых единиц). Из каждой группы (интервала) берется только одна единица. Так, при 2%-ной выборке отбирается каждая 50-ая единица (1:0,02; или формируется 50 групп или интервалов), при 20%-ной выборке - каждая 5-я единица (1:0,2) и т. д.

3. Типический отбор. При его осуществлении вся генеральная совокупность делится на группы по типическому признаку, а затем в каждой группе проводится тот или иной отбор. Наиболее часто из каждой группы выбирается количество единиц, пропорциональное удельному весу группы в общей совокупности и как правило - механическим отбором. Такой отбор часто называют пропорциональным типическим отбором с механической выборкой.

4. Серийный отбор с равновеликими сериями состоит в выборке не отдельных единиц генеральной совокупности, а целых серий (гнезд). Попавшие в выборку серии подвергаются сплошному наблюдению. Сами серии могут формироваться различными методами и способами.

5. Комбинированный отбор. Все вышеперечисленные виды отбора комбинируются между собой.

Используя различные виды отбора, можно применить и различные схемы отбора: бесповторный отбор (схема невозвращенного шара)- после выбора какой-либо единицы она обратно в генеральную совокупность не попадает и не может быть выбрана снова; повторный отбор (схема возвращенного шара) - после выбора какой-либо единицы она вновь возвращается в генеральную совокупность и может быть выбрана снова.

 

6.3. Определение средних и предельных ошибок при

различных видах отбора

Ошибка выборки - разность между характеристиками выборочной и генеральной совокупности.

Если представляет собой предел, которого не превосходит абсолютная величина то

Ошибка выборки зависит от многих факторов, и, если из одной и той же генеральной совокупности можно сформировать бесконечное множество выборочных совокупностей, каждая из них даст и свою ошибку. Поэтому при выборочном наблюдении говорят о средней из возможных ошибок ( средняя или стандартная ошибка выборки), которую обозначают как .

Величина прямо пропорциональна корню квадратному из дисперсии и обратно пропорциональна квадратному корню из объема выборочной совокупности;

,

для доли, соответственно

.

Эти формулы справедливы для повторной схемы отбора. При бесповторном отборе вводится поправочный коэффициент, равный

, тогда .

В тех случаях, когда выборка небольшая этим множителем можно пренебречь, так как его значение близко к единице (обычно при ).

Для решения практических задач важна не средняя ошибка выборки, а пределы, за которые она не выйдет, т.е. говорят о предельной ошибке выборки.

Предельная ошибка выборки связана со средней ошибкой соотношением , где t - коэффициент доверия, или t - статистика; t принимает значения 1, 2 или 3 и связан с вероятностью достижения заданного предела. Если t =1 это значит, что вероятность того, что ошибка выборки не превысит заданного значения, равна 0,683 или 68,3%. При t =2 - P =0,954 или 95,4%; t =3 - P =0,997 или 99,7%.

Таким образом, предельная ошибка выборки зависит от трех факторов: дисперсии , объема выборки n, и коэффициента доверия t. Формулы для определения предельных ошибок при различных видах и схемах отбора приведены в табл. 6.1.

 

Таблица 6.1

Определение предельной ошибки выборки при различных видах отбора

  Схема отбора   Предельная ошибка выборки
  для средней   для доли    
Собственно - случайный и механический отбор  
  Повторный отбор          
  Бесповторный отбор    
Типический отбор  
  Поторный отбор  
Бесповторный отбор  
Серийный отбор  
  Повторный отбор  
  Бесповторный отбор  
           

 

 

6.4. Определение необходимой численности выборки

При разработке выборочного наблюдения предполагают заранее заданными величину допустимой ошибки выборки и вероятность ответа (и t). Неизвестным, следовательно, остается тот минимальный объем выборки, который должен обеспечить требуемую точность. Из формулы и формул предельных ошибок выборки устанавливаем необходимую численность выборки. Формулы для определения численности выборки n зависят от способа отбора (табл.6.2).

Таблица 6.2

Формулы расчета численности выборки при собственно-случайном отборе

Способ отбора Для средней Для доли Для доли, если даже приблизительно она неизвестна
  Повторный  
  Бесповторный

Численность выборки можно выразить через отношение

,

т.е. предельную ошибку выборки выражают в единицах среднего квадратичного отклонения. Так, например, формула численности бесповторной собственно-случайной выборки для средней при t =3 примет вид

.

Для типического и серийного отбора объем выборки определяется по специальным формулам.

 

 

РАЗДЕЛ 7.СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ СВЯЗИ

 

7.1. Виды и формы взаимосвязи между явлениями

Одной из важнейших задач статистики является изучение, измерение и количественное выражение взаимосвязи между явлениями общественной жизни, установленной на основе качественного анализа.

Различают два вида связей: функциональную и корреляционную, обусловленные двумя типами закономерностей: динамическими и статистическими.

Для явлений, в которых проявляются динамические закономерности, характерна жесткая, механическая причинность, которая может быть выражена в виде уравнения, четкой зависимости и т.д. Такая зависимость называется функциональной. При функциональной связи каждому значению одной величины (аргумента) соответствует одно или несколько вполне определенных значений другой величины (функции).

В общественных процессах, в которых проявляются статистические закономерности, нет строгой зависимости между причиной и результатом и обычно не представляется возможным выявить строгую зависимость.

Связь, при которой каждому значению аргумента соответствует не одно, а несколько значений функции и между аргументом и функциями нельзя установить строгой зависимости называется корреляционной. Корреляционная зависимость проявляется только в средних величинах и выражает числовое соотношение между ними в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой.

По направлению различают прямую и обратную связи.

По аналитическому выражению корреляционная связь может быть прямолинейной и криволинейной.

 

7.2. Основные приемы изучения взаимосвязей

а) Метод параллельных рядов. Чтобы установить связь между явлениями достаточно расположить полученные в результате сводки и обработки материалы в виде параллельных рядов и сопоставить их между собой.

б) Балансовый метод. Для характеристики взаимосвязи между явлениями в статистике широко применяется балансовый метод. Сущность его заключается в том, что данные взаимосвязанных показателей изображаются в виде таблицы и располагаются таким образом, чтобы итоги между отдельными частями были равны, т.е. чтобы был баланс. Балансовый метод используется для характеристики взаимосвязи между производством и распределением продуктов, денежными доходами и расходами населения и т.д.

в) Метод аналитических группировок. При наличии массовых статистических данных для изучения и измерения взаимосвязей социально-экономических явлений широко пользуются методом аналитических группировок. Аналитические группировки позволяют установить наличие связи между двумя и более признаками и ее направление. Метод группировок сочетается с методом средних и относительных величин.

г) Дисперсионный анализ. Аналитические группировки при всей своей значимости не дают количественного выражения тесноты связи между признаками. Эта задача решается при помощи дисперсионного и корреляционного анализов.

Дисперсионный анализ дает, прежде всего, возможность определить роль систематической и случайной вариаций в общей вариации и, следовательно, установить роль изучаемого фактора в изменении результативного признака. Для этого пользуются правилом сложения дисперсий.

 

7.3. Корреляционный анализ

Определение формы связи

Изучение взаимосвязей между признаками статистической совокупности заключается в определении формы и количественной характеристики связи, а также степени тесноты связи. Корреляционный анализ и решает эти две основные задачи.

Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь.

Предварительный этап при установлении формы связи заключается в теоретическом анализе изучаемого явления, а также в представлении искомой связи графически. График, построенный по исходным данным, позволяет приблизительно определить: есть ли какая-то связь между явлениями; ее направление (прямая или обратная); примерную тесноту связи (естественно, что при графическом анализе используютсятолько две переменные).

Применение методов корреляционного анализа дает возможность выражать связь между признаками аналитически - в виде уравнения - и придавать ей количественное выражение.

Другими словами необходимо найти зависимость вида y=f(x), причем в качестве функции f(x) могут быть

полином 1-го порядка-

полином 2-го порядка -

степенная функция -

гиперболическая функция -

(могут быть использованы и другие виды функций).

Неизвестные параметры функций (аналитических уравнений связи) находятся методом наименьших квадратов, сущность которого в следующем: сумма квадратов отклонений фактических данных от выровненных должна быть наименьшей (см. рисунок):

или

y
x
Ù  
y
Отклонение фактических уровней от выровненных

Измерение тесноты связи

При изучении корреляционной связи важно выяснить не только форму, но и тесноту связи между факторным и результативным признаком. Для этого (при прямолинейной связи) рассчитывается показатель, называемый парным линейным коэффициентом корреляции , вычисляемый по формуле

.

Коэффициент корреляции принимает значение от -1 до +1, причем если >0, то корреляция прямая, если <0, то корреляция обратная, а если =0, то корреляция отсутствует полностью.

В зависимости от того, насколько приближается к единице, различают связь слабую, умеренную, заметную, высокую, тесную и весьма тесную.

Коэффициент корреляции может быть исчислен и по следующей формуле

,

где - среднее квадратическое отклонение результативного признака;

- среднее квадратическое отклонение факторного признака.

Зная линейный коэффициент корреляции, можно определить и параметры уравнения регрессии вида потому что:

.

Коэффициент корреляции применяется только в тех случаях, когда между явлениями существует прямолинейная связь. Если же связь криволинейная, то пользуются коэффициентом корреляции, вычисляемым по формуле

,

где y - исходные значения результативного показателя;

-теоретические значения;

-среднее значение y.

Имея среднее значение дисперсий, коэффициент корреляции можно вычислить как

,

где - факторная (межгрупповая) дисперсия или дисперсия воспроизводимости;

- случайная (средняя из внутригрупповых) дисперсия или остаточная дисперсия;

- общая дисперсия.

Коэффициент корреляции по своему абсолютному значению находится в пределах от 0 до 1.

Если коэффициент корреляции возвести в квадрат и выразить в процентах, получим показатель, называемый коэффициентом детерминации

D = R 2∙100%.

Он показывает, на сколько процентов изменение результативного фактора зависит от изменения факторного признака. Коэффициент детерминации является наиболее конкретным показателем, так как он отвечает на вопрос о том, какая доля в общем результате зависит от фактора, положенного в основании группировки.

7.4. Множественная корреляция

Определение формы и тесноты связи между тремя и более параметрами называется множественной корреляцией. При множественной корреляции определение формы связи аналогично определению формы связи при парной корреляции, а само уравнение регрессии ищется в виде (как правило)

.

При определении тесноты связи есть свои особенности. Теснота связи измеряется множественным коэффициентом корреляции, вид которого аналогичен коэффициенту корреляции при парной связи

.

Если изучается взаимодействие только трех факторов y=f(x,z), то коэффициент множественной корреляции можно определить по формуле

,

где - парные коэффициенты корреляции.

Множественный коэффициент корреляции находится в пределах от 0 до 1.

Множественный коэффициент детерминации, равный квадрату R, выраженному в процентах, характеризует долю вариации результативного признака Y под воздействием всех изучаемых факторных признаков.

Поскольку факторные признаки действуют не изолировано, а по взаимосвязи, то может возникнуть задача определения тесноты связи между результативным признаком и одним из факторных при постоянных значениях прочих факторов. Она решается при помощи частных коэффициентов корреляции. Например, при линейной связи y=f(x,z) частный коэффициент корреляции между x и y при постоянном z вычисляется по следующей формуле

.

Частный коэффициент корреляции при изучении зависимости Y от Z при постоянном Х определяется по формуле

.

Парные коэффициенты корреляции, как правило, выше частных. Это объясняется тем, что факторы взаимно коррелируют между собой.

При значительном количестве факторов частный коэффициент корреляции можно получить по формуле

,

где - коэффициент множественной корреляции; - коэффициент множественной корреляции результативного фактора (y) со всеми за исключением исследуемого.

 

7.5. Простейшие методы измерения тесноты связи

Измерение тесноты связи между факторами с помощью корреляционно-регрессионного и дисперсионного анализов сопряжено с большими вычислительными трудностями. Для ориентировочной оценки степени тесноты связи существуют приближённые методы, не требующие трудоемких расчетов. К ним относятся: коэффициент корреляции знаков Фехнера, коэффициент корреляции рангов, коэффициент ассоциации и коэффициент взаимной сопряженности.

1. Коэффициент корреляции знаков.

Основан на сопоставлении знаков отклонений от средней и подсчете числа случаев совпадения и несовпадения знаков. Коэффициент корреляции знаков определяется по формуле

,

где U - число пар с одинаковыми знаками отклонений x и y от и ;

V - число пар с разными знаками отклонений x и y от и .

Коэффициент корреляции знаков колеблется от -1 до +1. Этот показатель исчисляется очень просто, но именно в силу этого он не очень точен.

2. Коэффициент корреляции рангов. Этот показатель вычисляется не по первичным данным, а по рангам (порядковым номерам), которые присваиваются всем значениям изучаемых признаков, расположенным в порядке их возрастания. Если значения признака совпадают, то определяется средний ранг путем деления суммы рангов на число совпадающих значений. Коэффициент корреляции рангов определяется по формуле

,

где - квадрат разности рангов для каждой единицы d=x-y.

Коэффициент корреляции рангов также колеблется в пределах от -1 до +1.

3. Коэффициент ассоциации.

Коэффициент ассоциации применяется для установления меры связи между двумя качественными альтернативными признаками. Для его вычисления строится комбинационная 4-клеточная таблица:

а б
с д

которая выражает связь между двумя альтернативными явлениями.

Коэффициент ассоциации рассчитывается по формуле

.

Коэффициент ассоциации тоже колеблется в пределах от -1 до +1.

<== предыдущая лекция | следующая лекция ==>
Распределение квартир жилого дома по числу проживающих в них лиц | Коэффициент взаимной сопряженности
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1922; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.193 сек.