Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Материя, движение и взаимодействие

 

Эволюция представлений о материи и движении. В истории развития представлений о сущности и видах материи можно выделить три периода. В античной и средневековой натурфилософии, а также в рамках механической картины мира понятия «материя» и «вещество» отождествлялись. Начиная с ХIХ века в естествознании начинают различать два вида материи – вещество (т.е. все то, что обладает массой покоя) и поле. Наконец, в конце ХХ века в физических представлениях о материи появилась ее третья разновидность – т.н. физический вакуум. Отметим, что строение и свойства физического вакуума изучены еще недостаточно, его рассматривают как некую гипотетическую тонкую среду нашего вещественного мира. В то же время считается установленным, что по плотности энергии физический вакуум превосходит «обычные» формы материи.

Понятие материи как некоего субстрата вещественного мира, равно как и основы двух основных концепций строения материи (континуальной и корпускулярной) были сформированы еще в античные времена. К этим же временам относятся и попытки познать первооснову мира – т.е. то, из чего состоят все тела и предметы. В поисках природного первоэлемента (своего рода «кирпичика» мироздания) древнегреческие философы вольно или невольно обращались к мифологии, в которой утверждалось существование четырех стихий (греч. stoicheion – первооснова): земли, воды, воздуха и огня (вдумчивый читатель увидит соответствие этих четырех стихий четырем известным агрегатным состояниям вещества).

Корпускулярная концепция (концепция дискретности или концепция атомизма), впервые высказанная Левкиппом, наибольшее развитие получила в трудах Демокрита. Атомы Демокрита (слово «атом», означающее в переводе с греческого «неделимый», придумал сам Демокрит) – это предельно малые невидимые для человека частицы материи, которые невозможно разделить на меньшие части. Они неразрушимы, неизменны, непроницаемы и находятся в вечном движении. Согласно концепции Демокрита, существуют только атомы и пустота, т.е. пространство, в котором движутся атомы, а все наблюдаемые изменения, включая образование не только отдельных тел, но и бесчисленных миров, есть следствие перегруппировки атомов.

Следует отметить, что понятия материи у Демокрита еще не было, его атомы – это не частицы материи, а единицы бытия. В трудах Платона материя (как нечто, обладающее способностью принимать облик какого-либо элемента) лишь подразумевается, сам же термин «материя» для обозначения вещественной основы мира первым ввел Аристотель, он же первым начал рассматривать материю как основную категорию изучения природы. В трудах Аристотеля впервые получила развитие и континуальная концепция строения материи и описания природы в целом (концепция непрерывности).

В XVIII в. химиками было экспериментально установлено, что многие вещества в процессе соответствующих реакций способны разделяться на более простые компоненты, а те вещества, которые с помощью химических реакций такому разделению не поддавались, и были названы химическими элементами. В 1808 г. английский физик и химик Дж. Дальтон сформулировал основополагающие идеи о том, что каждому химическому элементу соответствует свой вполне определенный атом, что все атомы одного вида (элемента) неразличимы между собой, и что наблюдаемые в природе сложные вещества образуются при объединении различных атомов в соответствующих пропорциях. В 1869 г. выдающийся российский химик Д.И. Менделеев установил принцип построения периодической системы химических элементов, основанный «на их атомном весе и химическом сходстве».

Дальнейшее развитие атомистической концепции строения вещества еще долгое время было связано с успехами химической науки, а затем – с молекулярно-кинетической теорией газов. Однако, возникшее еще в античные времена представление об атомах как о неделимых мельчайших частичках вещества и в ХIХ в. не вызывало сомнений не только у химиков, но и у физиков. Лишь в конце этого столетия в связи с открытием законов спектроскопии, радиоактивности, рентгеновских и катодных лучей вопрос о том, что же такое атом, начал волновать ученых.

Радикальные изменения в XVI - XVII вв. произошли и в представлениях о движении. Галилеем, заложившим основы классической механики, был сформулирован принцип относительности, установлены закон инерции, закономерности свободного падения и движения тел по наклонной плоскости, принципы сложения движений. Используя экспериментальный метод, Галилей (опровергнув учение Аристотеля) установил, что скорость свободно падающего тела не зависит от его массы, и что ее величина растет пропорционально квадрату времени падения. Суть закона инерции Галилея заключается в следующем: тело покоится или движется, не изменяя скорости и направления движения, если на него не производится какого-либо внешнего воздействия (по Аристотелю, тело движется только при наличии внешнего действия, а когда это действие прекращается, тело останавливается).

В рамках МКМ поступательное движение тела рассматривается как перемещение его центра тяжести в трехмерном пространстве, в качестве параметров, характеризующих движение, используются координаты, время, скорость и ускорение. Для теоретического описания движения, которое строится на базе использования принципов относительности и инерции, используется понятие материальной точки, а главной механической характеристикой тела, рассматриваемой как мера его инерции, является масса.

Изменение представлений о структуре материи связано в первую очередь с обнаружением нового вида материи – электромагнитного поля. Несмотря на существенные отличия от вещественной формы материи, поле, как вещество, наделено реальными физическими свойствами, такими, как энергия, импульс, скорость распространения. Вывод Максвелла о возможности существования самостоятельного (не связанного с наличием электрических зарядов) электромагнитного поля в виде электромагнитных волн, распространяющихся в свободном пространстве со скоростью, равной скорости света, является одним из наиболее весомых вкладов в развитие естествознания. Использование уравнений Максвелла и по сей день обеспечивают наиболее общий подход к решению любых электродинамических задач.

Становление электромагнитной (электродинамической) картины мира на рубеже XIX–XX вв. характеризуется переходом от атомистических представлений в описании строения материи к континуальным. В качестве основных понятий, раскрывающих континуальную природу материи, в этой картине мира выступают поле и излучение. В отличие от дискретного вещества поле как особый вид материи не обладает массой покоя и характеризуется непрерывностью. В то же время в качестве исходной формы материи признаются элементарные частицы (протон, нейтрон, электрон и др.), из которых состоят атомы и, соответственно, все дискретные тела. С другой стороны, излучение, характеризующееся частотой (или длиной волны), рассматривается как поток квантов (фотонов) – дискретных порций, обладающих энергией, величина которой пропорциональна частоте излучения.

В электродинамической картине мира утверждается относительность и взаимосвязь пространства, времени и движения материальной системы. Движение рассматривается как процесс распространения электромагнитных волн, пределом скорости распространения волн (а также скорости движения дискретных частиц и тел) является скорость света в вакууме. Исследование строения материи в рамках электродинамической картины мира происходило на уровне микромира и вылилось, по существу, в исследование элементарных частиц.

Современные представления о строении материи. Элементарные частицы. Как уже отмечалось, весь мир можно условно подразделить на три структурных уровня – мегамир, макромир и микромир. Мегамир включает в себя космические системы, Вселенную и характеризуется практически неограниченными масштабами. К макромиру относятся тела (которые в этом случае называются макроскопическими) размером от 10-8 до 105 м. Микромир иногда делят на два подуровня: атомно-молекулярный (области порядка10-10 - 10-9 м) и квантовый (область порядка 10-17 м). Подобное деление мира на уровни весьма условно, но принципиальным является то, что процессы, происходящие в микромире, нельзя анализировать так же, как макропроцессы в некотором уменьшенном масштабе, поскольку явления микромира подчиняются другим закономерностям.

В классической физике (связанной в основном с описанием макромира) вещество и поле противопоставляются друг другу: вещество – дискретно, а поле – непрерывно. Напротив, в микромире полевые и корпускулярные свойства материи объединяются: поле проявляет корпускулярные свойства и, наоборот, частица может проявлять волновые свойства. Между макромиром и микромиром существует еще одно различие, заключающееся в том, что макромир характеризуется существенными величинами масс тел и относительно малыми скоростями их движения, для микромира же характерны малые массы, но высокие скорости.

Атомы очень долгое время считались элементарной основой материальных тел, однако в ХХ в. выяснилось, что не только атомы не элементарны и подвержены делению, но и атомные ядра делимы. Частицы, которые считались элементарными, как оказалось. «не элементарны», и могут претерпевать взаимные превращения, в результате которых некоторые из них исчезают, а другие появляются. Элементарными (субъядерными) стали называть такие частицы, которые не удается расщепить на составные части. Эти частицы подразделяются на стабильные и нестабильные, нестабильные частицы распадаются на более стабильные, однако отсюда не следует, что первые состоят из вторых. Всем элементарным частицам присущи следующие основные черты: частицы, пока существуют, являются неизменными; частицы одного сорта абсолютно одинаковы, неразличимы; частицы могут рождаться и исчезать.

Элементарные частицы в настоящее время разделяют на следующие четыре класса:

1. Фотоны (кванты электромагнитного поля) – частицы с нулевой массой покоя.

2. Лептоны (от греч. leptos - легкий) – к этому классу элементарных частиц относятся электроны и нейтрино.

3. Мезоны (от греч. mesos - средний) – нестабильные частицы, участвующие в сильном взаимодействии.

4. Барионы (от греч. barys - тяжелый) – элементарные частицы, к которым относятся протоны, нейтроны, гипероны и другие, участвующие в фундаментальных взаимодействиях всех четырех видов.

Барионы и мезоны являются сильновзаимодействующими частицами, по этому свойству они объединяются в группу с названием «адроны».

В начале второй половины XX века появилась гипотеза о существовании кварков – частиц, из которых состоят барионы и мезоны. Кварки обладают весьма необычным, нехарактерным для других частиц свойством – дробным электрическим зарядом. По-видимому, кварки не могут существовать в несвязанном, свободном виде. Число обнаруженных кварков различных видов, отличающихся друг от друга величиной и знаком электрического заряда и некоторыми другими признаками, достигло к настоящему времени нескольких десятков.

 

Соотношение понятий «взаимодействие» и «движение». Взаимодействие отдельных частей, движение и энергия представляют собой важнейшие атрибуты материи, без которых ее существование невозможно. Взаимодействие обусловливает соединение различных материальных элементов в системы, предопределяя системную организацию материи. Все свойства материи являются производными от взаимодействий, являются результатом структурных связей и взаимодействия между элементами материи.

Взаимодействие представляет собой протекающий во времени и пространстве процесс воздействия одних материальных объектов на другие путем обмена материей, энергией и движением, т.е. любое взаимодействие проявляется посредством определенного движения (изменения). Говоря о движении, обычно имеют в виду не только и не столько внутренние изменения материи, сколько внешнее перемещение тел в пространстве, где взаимодействия на первый взгляд не видно. Однако более пристальное рассмотрение позволяет сделать вывод о том, что и при перемещении тел в пространстве существует их взаимодействие с окружающей средой, в результате чего могут изменяться свойства движущихся тел. Не существует такого движения, которое не сопровождается взаимодействием элементов материи.

Основными формами существования материи являются вещество и поле, а взаимодействие и движение являются способами ее существования. Для всякого материального объекта существовать означает взаимодействовать, т.е. определенным образом проявлять себя по отношению к другим материальным объектам (элементам вещества или поля).

Формы движения материи можно классифицировать в соответствии с формами ее организации: движение в неживой природе, движение в живой Природе и социальное движение. В рамках физики ученые занимаются исследованием процессов, происходящих в неживой природе и являющихся основой более сложных процессов, протекающих в материальных объектах, соответствующих более высоким уровням организации материи.

На протяжении долгого времени физики понимали движение лишь как простое механическое движение – пространственное перемещение. В на-стоящее время движение этой простейшей формы понимается только как частный случай движения, изучаемого с физических позиций. Движение как проявление свойств материи неразрывно связано с так называемыми фундаментальными физическими взаимодействиями: гравитационное, электромагнитное, сильное и слабое взаимодействие.

Общая характеристика фундаментальных физических взаимодействий. Каждое из фундаментальных физических взаимодействий в своей основе содержит изначально присущие материи особые свойства, природа и сущность которых до настоящего времени не вполне понятны. Человек сталкивается с проявлениями самых различных сил, связанных с взаимодействием различных материальных объектов (тел или полей). Действие одних сил происходит при непосредственном контакте тел (соприкосновении), другие силы действуют без такого контакта (на расстоянии), например, электромагнитные силы и силы гравитации. При всем многообразии действующих в природе сил соответствующие им взаимодействия можно свести к четырем фундаментальным. Ранжируя по степени интенсивности, их можно расположить в следующей последовательности: гравитационное, слабое, электромагнитное, сильное.

Гравитационное взаимодействие является наименее интенсивным и распространяется на материальные объекты любого вида; данный вид взаимодействия имеет решающее значение, когда рассматриваются объекты, обладающие значительными массами.

Слабое взаимодействие, имеющее радиус действия менее 10-17 м, обусловливает процессы превращения одних элементарных частиц в другие, а также взаимодействие нейтрино с веществом. Типичный пример слабого взаимодействия – бета-распад нейтрона (в атомном ядре нейтрон стабилен, но «в одиночестве» распадается за 15 минут). Переносчиками слабого взаимодействия являются векторные бозоны, масса которых достаточно велика (в сто раз превышает массу протона).

Электромагнитное взаимодействие, так же, как и гравитационное, относится к дальнодействующим (радиус их действия не ограничен). Оно определяет взаимодействие между заряженными частицами (например, между электронами и ядрами атомов), проявляется в химических связях, силах упругости, трения. Именно электромагнитные силы отвечают за стабильность атомов, определяют структуру молекул и ход химических реакций.

Сильное взаимодействие (как и слабое) является короткодействующим, радиус его действия около 10-15 м. Данное взаимодействие, обусловленное ядерными силами, обеспечивает соединение кварков в адроны и нуклонов в атомные ядра, благодаря нему ядра атомов являются весьма стабильными, устойчивыми к разрушению. Величина ядерных сил гораздо больше, чем электромагнитных, поэтому взаимодействие данного вида и было названо сильным.

Перечисленные фундаментальные взаимодействия являются причинами и источниками преобразований материальных любых объектов, природных процессов и явлений. Фундаментальные взаимодействия имеют как общие черты, так и отличия друг от друга. Общим для всех взаимодействий является то, что передача взаимодействия осуществляется не мгновенно, а с некоторой конечной скоростью (не превышающей скорость света). Таким образом, в данном случае выполняется принцип близкодействия. Кроме этого, по современным представлениям взаимодействие любого вида должно иметь своего физического агента, переносчика (транслятора) взаимодействия, при помощи которого оно происходит. В соответствии с этой концепцией взаимодействие между материальными объектами осуществляется посредством того или иного физического поля, непрерывно распределенного в пространстве, через среду, их разделяющую.

С появлением в начале XX века квантовой механики представление о физическом поле существенно расширилось и углубилось. Согласно квантовой концепции поля любое поле является не непрерывным, а имеет дискретную структуру. Следствием корпускулярно-волнового дуализма является то, что каждому физическому полю соответствуют определенные частицы – корпускулы. Например, электромагнитному полю соответствуют фотоны, это означает, что электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами (квантами электромагнитного поля), являющимися переносчиками данного взаимодействия. Точно так же и другие физические взаимодействия возникают и передаются в результате обмена материальных объектов квантами соответствующих полей.

 

 

<== предыдущая лекция | следующая лекция ==>
Концепция системности. Системный подход и системный метод | Пространство и время. Специальная и общая теории
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1327; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.