Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определенный интеграл. Геометрический смысл определённого интеграла

Пусть на отрезке [ a, b ] (b > a) задана непрерывная функция y = f (x), принимающая на этом отрезке неотрицательные значения: при . Требуется определить площадь S криволинейной трапеции ABCD, ограниченной снизу отрезком [ a, b ], слева и справа - прямыми x = a и x = b, сверху – функцией y = f (x).
Для решения этой задачи разделим произвольным образом основание AD фигуры точками x 0 = a, x 1 , x 2 , …, xn -1 = a, xn = b на n частей [ x 0 , x 1], [ x 1 , x 2], …, [ xi -1, xi ], …, [ xn -1, xn ]; символом будем обозначать длину i -го отрезка: . На каждом из отрезков [ xi -1, xi ] выберем произвольную точку , найдём , вычислим произведение (это произведение равно площади прямоугольника Pi с основанием [ xi -1, xi ] и высотой ) и просуммируем эти произведения по всем прямоугольникам. Полученную сумму обозначим S ступ: .
S ступ равно площади ступенчатой фигуры, образованной прямоугольниками Pi, i = 1,2,…, n; на левом рисунке эта площадь заштрихована. S ступ не равна искомой площади S, она только даёт некоторое приближение к S. Для того, чтобы улучшить это приближение, будем увеличивать количество n отрезков таким образом, чтобы максимальная длина этих отрезков стремилась к нулю (на рисунке ступенчатые фигуры изображены при n = 7 (слева) и при n = 14 (справа)). При разница между S ступ и S будет тоже стремиться к нулю, т.е.
.

Определение определённого интеграла. Пусть на отрезке [ a, b ] задана функция y = f (x). Разобьём отрезок [ a, b ] произвольным образом на n частей точками [ x 0 , x 1], [ x 1 , x 2], …, [ xi -1, xi ], …, [ xn -1, xn ]; длину i -го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков[ xi -1, xi ] выберем произвольную точку и составим сумму .
Сумма называется интегральной суммой. Если существует (конечный) предел последовательности интегральных сумм при , не зависящий ни от способа разбиения отрезка [ a, b ] на части [ xi -1, xi ], ни от выбора точек , то функция f (x) называется интегрируемой по отрезку [ a, b ], а этот предел называется определённым интегралом от функции f (x) по отрезку [ a, b ] и обозначается .
Функция f (x), как и в случае неопределённого интеграла, называется подынтегральной, числа a и b - соответственно, нижним и верхним пределами интегрирования.
Кратко определение иногда записывают так: .
В этом определении предполагается, что b > a. Для других случаев примем, тоже по определению:
Если b=a, то ; если b < a, то .

Теорема существования определённого интеграла. Если функция f (x) непрерывна на отрезке [ a, b ], то она интегрируема по этому отрезку.
Примем это утверждение без доказательства, поясним только его смысл. Интегрируемость функции означает существование конечного предела последовательности интегральных сумм, т.е. такого числа , что для любого найдётся такое число , что как только разбиение отрезка удовлетворяет неравенству , то, независимо от выбора точек выполняется неравенство. Требование непрерывности f (x) достаточно для интегрируемости, но не является необходимым. Интегрируемы функции, имеющие конечное или даже счётное число точек разрыва на [ a, b ] при условии их ограниченности (т.е. все точки разрыва должны быть точками разрыва первого рода). Неограниченная функция не может быть интегрируемой (идея доказательства этого утверждения: если f (x) неограничена на [ a, b ], то она неограничена на каком-либо[ xi -1, xi ], т.е. на этом отрезке можно найти такую точку , что слагаемое , а следовательно, и вся интегральная сумма, будет больше любого наперед заданного числа).
Геометрический смысл определённого интеграла. Если f (x) >0 на отрезке [ a, b ], то равен площади криволинейной трапеции ABCD, ограниченной снизу отрезком [ a, b ], слева и справа - прямыми x = a и x = b, сверху – функцией y = f (x).

<== предыдущая лекция | следующая лекция ==>
П. 2. Интегрирование некоторых иррациональных функций | Свойства определённого интеграла
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 915; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.