Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Група кварцу 4 страница




CaSO4· 2H2O = CaSO4· 0,5H2O + 1, 5 H2O.

До низьковипалювальних гіпсових в’яжучих речовин належать: гіпс будівельний, формувальний і високоміцний, різновидом якого є супергіпс.

Будівельний гіпс характеризується невисокою міцністю (2…16 МПа).

Формувальний гіпс відрізняється від будівельного гіпсу тонкістю помелу, більшою міцністю та постійністю властивостей. Застосовують його у керамічній, фарфоро-фаянсовій, машинобудівній промисловостях для виготовлення форм і моделей.

Високоміцний гіпс отримують термічною обробкою гіпсового каменю в автоклавах у середовищі насиченої пари при тиску, вищому за атмосферний, або при кип’ятінні у водних розчинах деяких солей з наступним сушінням та помелом до отримання тонко дисперсного порошку. Міцність матеріалу 25…60 МПа.

Супергіпс використовують для виготовлення облицювальних плит, фігурних виробів, для влаштування безшовних наливних підготовок для підлог.

Характеристика готового продукту: кількість води для отримання тіста нормальної консистенції становить 24…26%, початок тужавіння – 5…8 хв, кінець – 9…12 хв, міцність при стиску в сухому стані – 60…70 МПа.

Низьковипалювальні гіпсові в’яжучі речовини застосовують у будівництві для виготовлення панелей-перегородок, блоків, тепло- і звукоізоляційних плит, декоративних плит, пінобетонних виробів, сухої штукатурки. Гіпс використовують для виробництва форм і моделей у фарфоро-фаянсовій, машинобудівній та інших галузях промисловості.

Високовипалювальні гіпсові в’яжучі речовини, що повільно тужавіють і тверднуть, виготовляють випалюванням гіпсового каменю при температурі вище 600 оС. До них належать ангідритовий цемент, опоряджувальний гіпсовий цемент, високовипалювальний гіпс (естрих-гіпс).

Ангідритовий цемент отримують тонким помелом нерозчинного ангідриту з добавками-каталізаторами. Як активатори твердіння використовують сульфати (Na2SO4, NaH SO4, K2SO4, FeSO4 та інші), а також матеріали, що містять певну кількість вільного вапна (доменний шлак, вапно, доломіт та ін.).Ангідритовий цемент порівняно з будівельним гіпсом характеризується меншою водопотребою (30…35 %), більш повільними строками тужавлення та більш високою водостійкістю (коефіцієнт розм’якшення 0,4…0,5). Цей цемент використовують для влаштування безшовних підлог, підготовок під лінолеум, для приготування розчинів та отримання штучного мармуру, а також для бетонів, призначених для мурування стін малоповерхових будівель при відносній вологості повітря не більше 70 %.

5.3.1. Технічні характеристики гіпсових в’яжучих

Істинна щільність гіпсових в’яжучих коливається у межах 2,6…2,75 г/см3 і обумовлена їхнім фазовим складом.

Насипна щільність гіпсу становить 800…1100 кг/м3. Тонкість помелу оцінюється залишком на ситі №02 і для гіпсу грубого помелу становить не більше 23 %, середнього – 14 % і тонкого – 2 % (позначається відповідно І, ІІ, ІІІ). Збільшення тонкості помелу зумовлює підвищення пластичності гіпсового тіста, міцності гіпсових виливків, але збільшує водопотребу.

Водопотреба визначається кількістю води, потрібною для приготування тіста стандартної консистенції (діаметр розпливу 180±5 мм), і залежить від виду і співвідношення модифікацій сульфату кальцію. Для отримання тіста нормальної щільності з β- CaSO4· 0,5H2O потрібно 50…70 % води, а з модифікації α- CaSO4· 0,5H2O – 30…40 %. Теоретично для реакції гідратації потрібно 18,6 % води. Висока водопотреба гіпсових в’яжучих призводить до того, що вироби з них відрізняються підвищеною пористістю (40…60 %), невисокою міцністю.

Строки тужавлення. Гіпсові в’яжучі за строками тужавлення поділяють на такі види: швидкотверднучі (А) – з початком тужавлення не раніше 2 хв і кінцем не пізніше 15 хв, нормальнотверднучі (Б) – з початком тужавлення не раніше 6 хв і кінцем не пізніше 30 хв і повільнотверднучі (В) - з початком тужавлення не раніше 20 хв.

При зниженні температури до 10 оС строки тужавлення подовжуються. При підвищенні температури до 40…50 оС відмічається скорочення строків тужавлення. При подальшому підвищенні температури строки тужавлення подовжуються, а при Т=90…100 оС гіпс не тужавіє взагалі.

Міцнісні характеристики гіпсових в’яжучих визначають випробуванням зразків-балочок розмірами 40×40×160 мм з гіпсового тіста стандартної консистенції через 2 години після виготовлення. Висушування гіпсових виливків до сталої маси збільшує їхню міцність майже у два рази.

Передбачено 12 марок гіпсових в’яжучих – від Г-2 до Г-25, де цифра означає нормовану межу міцності при стиску в МПа. Межа міцності при згині змінюється відповідно від 1,2 до 8 МПа.

Гіпсові вироби мають високу вогнестійкість. Через малу теплопровідність вони повільно прогріваються і руйнуються лише після 6…8 годин нагрівання.

Водостійкість гіпсових виробів є невисокою. Основними шляхами підвищення водостійкості гіпсових виробів є зменшення розчинності гіпсу при введенні добавок; ущільнення гіпсових виливків; просочування або обмазування виробів речовинами, що запобігають проникненню води.

Істотно підвищується водостійкість гіпсу при додаванні вапна 5…25 %, суміші вапна і гідравлічної добавки (трепелу, опоки, шлаку), суміші портландцементу та гідравлічної добавки.

5.3.2. Повітряне будівельне вапно

Повітряне будівельне вапно (ДСТУ Б.В.2.7-90-99) – продукт випалювання не до спікання при температурі 1000…1200 оС кальцієво-магнієвих гірських порід (вапняку, крейди, вапняку-черепашнику, доломітизованого вапняку), що містять не більше 6 % глинистих домішок. Високодисперсний кремнезем і глинисті домішки при їхньому обмеженому вмісті 5…7 % і відповідно вибраному режимі випалювання не знижують якість вапна. Домішки гіпсу й піриту не бажані, оскільки сприяють утворенню вапна, яке гаситься повільно.

Основним технологічним процесом при отриманні повітряного вапна є випалювання, при цьому утворюється продукт (грудкове негашене вапно) у вигляді поритих кусків, що активно взаємодіють з водою:

CaCO3 + 178 кДж = СаО + СО2.

Продукт випалювання містить, крім головної складової частини, також деяку кількість оксиду магнію, який утворюється в результаті термічної дисоціації:

MgCO3 = MgО + СО2.

Для випалювання карбонатної сировини використовуються печі різних конструкцій: шахтні, обертові, з «киплячим шаром», циклонно-вихрові, агломераційні гратки.

Недовипалення чи перевипалення вапна в печі знижує його якість.

Залежно від вмісту оксиду магнію повітряне вапно поділяють на кальцієве (вміст MgО ≤ 5 %), магнезіальне (MgО – 5…20 %) та доломітове (MgО – 20…40 %).

Повітряне вапно поділяють на:

а) негашене грудкове (вапно-кипілка) – продукт випалювання карбонатних порід;

б) негашене мелене – продукт помелу грудкового вапна;

в) гідратне (гашене) вапно – тонкий пухкий порошок, який утворюється при змішуванні грудкового вапна з водою.

Мелене негашене вапно транспортують у герметично закритих металевих контейнерах або мішках. Зберігати мелене вапно можна не більш як 15 діб на сухих складах.

Гашене вапно утворюється за реакцією

CaO + H2O = Ca(OH)2 + 63,7 кДж.

Теоретично для гашення вапна потрібно 32,13 % води від маси CaO. Залежно від того, скільки води витрачається для гашення, отримують три різних продукти.

Якщо кількість води становить близько 70 % від маси вапна, отримують вапно-пушонку або гідратне вапно, яке збільшується в об’ємі в 2…3,5 раза порівняно з грудковим вапном, і має насипну густину 400…450 кг/м3.

Якщо кількість води при гашенні досягає 200…250 % від маси вапна, то утворюється пластичне вапняне тісто, що містить 50 % води. При витраті ще більшої кількості води утворюється вапняне молоко.

При змішуванні з водою твердіння гашеного вапна пов’язане з двома процесами: кристалізацією гідроксиду кальцію Ca(OH)2 при висиханні вапняних розчинів та наступною його карбонізацією:

CaO + H2O = Ca(OH)2,

Ca(OH)2 + СО2 + nH2O = СаСО3 + (n + 1) · H2O.

Утворений карбонат кальцію СаСО3 зростається з кристалами Ca(OH)2 й зміцнює вапняний розчин та підвищує його водостійкість. Щоб прискорити твердіння, до вапна додають цемент і гіпс, піддають вироби штучній карбонізації.

Технічні характеристики будівельного вапна оцінюються визначенням активності, тонкості помелу, швидкості гашення, водопотреби, строків тужавлення, міцності при стиску.

 

Істинна щільність негашеного вапна – 3,1…3,3 г/см3, а гашеного у кристалічному стані Ca(OH)2 – 2,23 г/см3. Насипна щільність грудкового вапна – 1600…2600 кг/м3 , а меленого негашеного вапна – 900…1100 кг/м3 , гідратного (гашеного) вапна – 400…500 кг/м3 , а вапняного тіста – 1300…1400 кг/м3 .

За вимогами стандарту сорт будівельного повітряного вапна визначається залежно від його активності, що оцінюється за вмістом активних оксидів (СаО+MgO), який становить не менше 70…90 %.

Повітряне вапно характеризується пластичністю, пов’язаною з його високою водоутримувальною здатністю, внаслідок чого вапняні розчини мають високу легкоукладальність, рівномірно розподіляються тонким шаром на поверхні цегли або бетону, добре зчіплюються з ними.

Строки тужавлення. Будівельні розчини на основі гашеного вапна тужавіють дуже повільно (протягом 5…7 діб), причому цей процес прискорюється при сушінні.

Будівельні розчини й бетони на основі меленого негашеного вапна швидко тужавіють і тверднуть (через 15…60 хв після замішування), причому водовапняне відношення звичайно становить 0,9…1,5. Розчини й бетони, здатні до самонагрівання під час гідратації, доцільно використовувати при проведенні робіт у зимовий період (штукатурення, мурування, бетонування тощо).

Міцність будівельних розчинів і бетонів на основі повітряного будівельного вапна залежить від умов його твердіння. Будівельні розчини на основі гашеного вапна повільно тверднуть при звичайних температурах (10…20 оС) і через місяць набувають невеликої міцності (0,5…1,5 МПа). Твердіння розчинів на основі негашеного вапна в повітряних умовах через 28 діб сприяє отриманню каменю міцністю 2…3 МПа. Автоклав не твердіння щільних вапняно-піщаних бетонів дозволяє отримати камінь міцністю 30…40 МПа і вище.

Повітряне вапно використовують для приготування мурувальних розчинів, а також для виготовлення штучних бетонних виробів, силікатної цегли та інших вапняно-піщаних виробів автоклавного твердіння, фарбових сумішей.

5.3.3. Магнезіальні в’яжучі речовини

Магнезіальні в’яжучі речовини – каустичний магнезит і каустичний доломіт – це дисперсні порошки, головною складовою частиною яких є оксид магнію. Особливістю цих в’яжучих є те, що вони замішуються не водою, а водними розчинами солей. Магнезіальні цементи, відомі як цементи Сореля, не потребують вологих умов твердіння, забезпечують високу вогнестійкість, низьку теплопровідність, підвищені зносостійкість іміцність утвореного штучного каменю.

Як сировину для магнезіальних в’яжучих найчастіше використовують магнезит MgCO3 (іноді доломіт MgCO3· СаCO3).

Магнезит випалюють при температурі 750…850 оС до повного розкладання MgCO3 на оксиди:

MgCO3 = MgО + СО2.

При підвищенні температури випалювання спостерігається зростання кристалів та їхня рекристалізація, що обумовлює зменшення активності MgО та швидкості його гідратації.

Розкладання доломітів в інтервалі температур 700…900 оС проходить у два етапи:

MgCO3· СаCO3 = СаCO3 + MgО + СО2.

СаCO3 = СаО + СО2.

Магнезіальні в’яжучі речовини змішують водним розчином хлориду магнію MgCl2·6H2O або інших магнезіальних солей. Це сприяє прискоренню твердіння та підвищенню міцності в’яжучих, оскільки поряд із гідратацією оксиду магнію та утворенням бруситу Mg(ОН)2, відбувається процес синтезу гідро хлориду магнію MgCl2·3 Mg(ОН)2·7Н2О, який кристалізується у вигляді волокон і підвищує міцність матеріалу на згині.

Магнезіальні в’яжучі речовини характеризуються високою міцністю при стиску, що досягає 60…100 МПа, високою адгезією до заповнювачів.

Магнезіальний цемент найчастіше використовують разом з органічними заповнювачами. Такі вироби відрізняються підвищеною ударною в’язкістю, добре обробляються, є жаростійкими, мають звукоізоляційні властивості. Типовими прикладами таких матеріалів є ксилоліт (заповнювач – деревна тирса) і фіброліт (заповнювач – довговолокниста деревна маса).

На основі магнезіальних в’яжучих речовин виготовляють теплоізоляційні піно- і газоматеріали. Ці в’яжучі речовини можна застосовувати при проведенні штукатурних робіт, використовуючи як заповнювач кварцовий пісок.

5.4. Гідравлічні в’яжучі речовини

Гідравлічне вапно – це продукт, отриманий випалюванням мергелястих вапняків, що містять від 6 до 20 % глинистих або високодисперсних піщаних домішок.

Основними операціями при виробництві гідравлічного вапна є добування сировини, її подрібнення, випалювання і помел. Процес випалювання здійснюють у шахтних або обертових печах при температурі від 900 до 1150, а іноді 1200 оС.

Під час випалювання, паралельно з процесами зневоднення глинистих мінералів і розкладання карбонатів кальцію і магнію, утворюються не лише вільні оксиди СаО і MgО, а й їхні сполуки з SiO2 та де гідратованою глиною у вигляді кальцієвих силікатів, алюмінатів і феритів, які надають вапну гідравлічних властивостей.

Гідравлічне вапно перші сім діб має тверднути на повітрі, а далі може тверднути й набувати міцності як на повітрі, так і у воді.

Технічні характеристики гідравлічного вапна.

Істинна щільність становить 2,6…3,0 г/см3, а насипна – 700…800 кг/м3.

Водопотреба та водоутримувальна здатність гідравлічного вапна нижчі, ніж повітряного. Строки тужавлення гідравлічного вапна залежить від вмісту вільного СаО.

За вимогами ДСТУ Б В. 2.7-90-99 вапно вважається слабко гідравлічним, якщо межа міцності при стиску на 28 добу твердіння становить 1,7; при згині – 0,4 МПа; сильногідравлічним, якщо межа міцності при стиску та згині на 28 добу твердіння становить 5, та 1,0 МПа відповідно.

Слабкогідравлічне вапно тужавіє швидше, а твердне повільніше, ніж сильно гідравлічне. Початок тужавлення складає 0,5…2,0 год, а закінчення – 8…16 год. Штучний камінь на основі гідравлічного вапна не визначається високою міцністю. Після 28 діб комбінованого зберігання міцність при стиску зразків із вапняно-піщаного розчину (складу 1:3 за масою) становить 2…5 МПа.

Гідравлічне вапно застосовують для приготування будівельних розчинів підвищеної водостійкості, мурувальних і штукатурних розчинів, для виробництва вапняно-пуцоланових цементів, легких і важких бетонів низьких класів, для виготовлення стінового каміння, призначеного для експлуатації в умовах різної вологості, для стабілізації ґрунтів при будівництві шляхів із малою інтенсивністю руху. Ця речовина входить до складу сухих будівельних сумішей і широко використовується для виготовлення шпаклівок, замазок і фарб. Гідравлічне вапно можна застосовувати як основу під фресковий живопис, тобто при нанесенні малюнків розбавленими у воді мінеральними фарбами на свіжу штукатурку.

Романцемент найчастіше розглядають як один з етапів у розвитку технології отримання гідравлічних в’яжучих речовин, подібних до портландцементу. Його виготовляють випалюванням не до спікання та наступним помелом вапнякових або магнезіальних мергелів, які містять понад 25 % глинистих домішок. Для регулювання властивостей у романцемент можна вводити до 5 % гіпсу і до 15 % активних мінеральних добавок.

Портландцемент – гідравлічна в’яжуча речовина, яку виготовляють спільним тонким подрібненням клінкеру з гіпсом або іншими добавками.

Перший патент на спосіб виробництва штучного каменю під назвою портландський цемент був отриманий у 1824 р. Джозефом Аспдіном. У практиці світового будівництва портландцемент є головним матеріалом для виробництва бетону, залізобетону й будівельних розчинів.

Портландцементний клінкер отримують випалюванням до спікання (при температурі приблизно 1450 оС) сировинної суміші певного складу, що забезпечує синтез переважно високоосновних силікатів кальцію. Гіпс до складу портландцементу вводять для регулювання строків тужавлення і підвищення міцності.

Сировиною для виготовлення портландцементного клінкеру можуть бути карбонатні породи (приблизно 75 %) в суміші з алюмосилікатними речовинами (25 %). Як карбонатні породи використовують вапняки, крейду, вапняки-черепашники, вапнякові туфи, а як алюмосилікатний компонент – глини, але при відповідному економічному обґрунтуванні можна застосовувати суглинки, леси, аргіліти й глинисті сланці. Як сировину використовують природні суміші вапняків з глинами – мергелі.

До найпоширеніших побічних продуктів, придатних для виробництва портландцементного клінкеру, відносять доменні гранульовані шлаки, які завдяки хімічному складу (SiO2 – 38…40%, CaO – 43…44%, Al2O3 – 5…14 %) іноді використовують замість частини глинистого або карбонатного компонентів.

З метою коригування складу шихти також застосовують електротермофосфорні шлаки, паливні золи, відходи вуглезбагачення та різні шлами, в тому числі нефеліновий (пелітовий), монокальцієвий і червоний.

5.5. Технологія виробництва цементу

Виробництво цементу здійснюється сухим, мокрим та комбінованим способами.

Процес приготування сировинної суміші для отримання портландцементного клінкеру включає: подрібнення (крупне й тонке), дозування, змішування сировинних компонентів, коригування хімічного складу отриманої суміші, її гомогенізацію і випалювання.

Сухий спосіб виробництва полягає у подрібненні й ретельному перемішуванні сухих або попередньо висушених сировинних матеріалів. Використання цього способу є доцільним при застосуванні однорідних за складом і структурою вапняку й глини вологістю від 10 до 15 %.

Мокрий спосіб виробництва доцільно застосовувати, якщо м’яка сировина (крейда, глина) має значну вологість. Вихідні компоненти подрібнюють і змішують з великою кількістю води (36…42 % від маси сухої речовини) до утворення рідкотекучої маси у вигляді суспензії (шламу). Мокрий спосіб дає змогу знизити енергоємність процесу подрібнення, полегшити транспортування і перемішування сировинної суміші, проте витрати палива на її випалювання в печі в 1,5…2 рази більші, ніж при сухому способі.

Комбінований спосіб передбачає підготовку сировинної суміші з отриманням шламу, який потім зневоднюють до вологості 16…18% і переробляють на гранули.

Після випалювання в обертових або шахтних печах клінкер інтенсивно охолоджується у барабанних рекуператорах та холодильниках (до температури 100…200 оС), щоб попередити утворення крупних кристалів.

З холодильників клінкер надходить на склад, де його витримують протягом 1…2 тижнів для стабілізації властивостей.

Помел клінкеру здійснюють у трубних (кульових) млинах. Під час помелу до клінкеру додають двоводний гіпс (до 3,5% за масою) для сповільнення тужавіння портландцементу.

5.6. Хіміко-мінералогічний склад портландцементного клінкеру

Хімічний склад клінкеру представлений чотирма основними оксидами, мас. %: СаО – 63…67; SiO2 - 20…24; Al2O3 – 4…9; Fe2O3 – 2…4. Їхній загальний вміст становить 95…97 %; у невеликій кількості в клінкері містяться також MgO, SO3 , Na2O, K2O, TiO2 та ін.

Наявність у складі клінкеру СаО обумовлює високу міцність і швидке твердіння цементу.

SiO2 зв’язує СаО в силікати, здатні до гідравлічного твердіння.

Підвищення у складі клінкеру оксиду алюмінію Al2O3 зумовлює швидке тужавіння і прискорене твердіння цементу, але негативно впливає на сульфато- й морозостійкість.

У процесі випалювання сировинної суміші до спікання утворюються чотири основні мінерали цементного клінкеру: три кальцієвий силікат 3СаО. SiO2 - аліт; двокальцієвий силікат 2СаО. SiO2 - бєліт; трикальцієвий алюмінат 3СаО. Al2O3; чотирикальцієвий алюмофірит 4СаО. Al2O3.Fe2O3. Скорочений умовний запис цих мінералів відповідно такий: С3S, С2S, С3A, С4AF.

Завдання до самостійної роботи

1. Розглянути значення кожного мінералу клінкеру цементу для отримання цементів заданих властивостей.

Лекція 6

МІНЕРАЛИ Й ВИРОБИ НА ОРГАНІЧНІЙ ОСНОВІ

БІТУМНІ Й ДЬОГТЕВІ В´ЯЖУЧІ РЕЧОВИНИ ТА МАТЕРІАЛИ НА ЇХ ОСНОВІ

6.1. Особливості утворення в’яжучих речовин органічного походження та їхня класифікація

Органічні в’яжучі речовини –це природні або штучні тверді, в’язко-пластичні й рідкі матеріали, що складаються із хімічних сполук, молекули яких містять карбону. Органічні в’яжучі речовини можна розглядати як дисперсні системи, представлені сумішшю різних сполук, в тому числі метанових CnH2n+2, нафтенових CnH2n, ароматичних CnH2n-6, та гетероциклічних, а також високомолекулярними вуглеводнями й неметалевими похідними.

Органічні в’яжучі є гідрофобними й горючими матеріалами, більшість з яких здатні розчинятися в органічних розчинниках (бензолі, толуолі, гасі, лігроїні), а деякі тільки набухати в них. Вони характеризуються достатньою адгезією до більшості матеріалів.

Сировиною для виробництва органічних в’яжучих речовин є продукти органічного походження, в тому числі нафта, кам’яне вугілля, горючі сланці, торф. Ця сировина підлягає хімічній переробці, в результаті чого, крім таких цінних продуктів, як бітум, дьоготь, одержують також смолоподібні залишки, з яких шляхом додаткової переробки отримують цілий ряд речовин, що за своїми властивостями можуть бути класифіковані як органічні в’яжучі матеріали.

Залежно від властивостей, хімічного складу, виду сировини та технологічного процесу органічні в’яжучі речовини поділяють на:

бітумні (природні, нафтові, сланцеві) речовини, що складаються із вуглеводнів метанового, нафтенового й ароматичного рядів, а також їхніх кисневих, сірчаних і азотних похідних;

дьогтьеві (кам’яновугільні, торф’яні, деревні) речовини, які складаються із суміші ароматичних вуглеводнів та їхніх кисневих, азотних або сірчаних похідних;

бітумнополімерні, що складаються з нафтових бітумів та полімерів;

гумобітумні, одержані спільною переробкою нафтових бітумів та старої гуми;

гумодьогтеві, одержані спільною переробкою старої гуми та дьогтепродуктів.

Бітумні та дьогтеві в’яжучі входять до групи органічних в’яжучих речовин, що складаються з високомолекулярних вуглеводнів та їх неметалевих похідних (сполук вуглеводнів із сульфуром, оксигеном, нітрогеном). Основними ознаками цих в’яжучих є розм’якшення (розрідження) їх при нагріванні й відновлення своєї початкової в’язкості при охолодженні.

6.2. Бітумні в’яжучі речовини

До бітумних в’яжучих матеріалів належать природні й штучні (нафтові) бітуми.

Природні бітуми – це в’язкі рідини й твердоподібні речовини чорного чи темно-коричневого кольору, що утворилися внаслідок природного процесу окислювальної полімеризації нафти. Вони легко розчиняються в сірковуглеці, бензолі й хлороформі, гірше – у бензині. Найчастіше природні бітуми містяться у пісках, пісковиках, вапняках, доломітах і сланцях, в місцях нафтових родовищ, утворюючи лінзи, а іноді й цілі асфальтові озера. Бітумні породи використовують у вигляді тонкого порошку для одержання асфальтової мастики й асфальтових бетонів.

Нафтові (штучні) бітуми, одержують переробкою нафтової сировини. В Україні постачальниками нафтових бітумів є Кременчуцький, Одеський, Лисичанський і Дрогобицький нафтопереробні заводи.

Залежно від в’язкості нафтові бітуми поділяють на тверді, напівтверді й рідкі, а залежно від способу виробництва – на залишкові, окисненні й крекінгові. За призначенням бітуми бувають дорожніми, будівельними, покрівельними, гідроізоляційними.

Властивості бітумів визначаються їхньою природою, складом і технологією отримання. Для бітумів, на відміну від мінеральних в’яжучих речовин, характерні гідрофобність, атмосферостійкість, підвищена деформативність, здатність розм’якшуватися при нагріванні. Щільність бітумів коливається в межах від 800 до 1300 кг/м3.

Основними якісними показниками бітумів є в’язкість (твердість), деформативність і теплостійкість. Позначення марки бітуму складається з літер, які пов’язані з його призначенням, наприклад БНК 90/60 – означає бітум нафтовий покрівельний (кровельний), і цифр, перша з яких відповідає температурі розм’якшення, а друга – пенетрацї.

Для дорожніх бітумів цифри (перша та друга) пов’язані з межами зміни пенетрацї, наприклад БНД 200/300.

Бітумні матеріали характеризуються здатністю до старіння, сутність якого полягає у підвищенні крихкості й зменшенні тріщиностійкості внаслідок поступового окиснення компонентів під дією атмосферних факторів.

Бітумні речовини є гідрофобними, вони не змочуються і не розчиняються у воді, що дозволяє їх використовувати як основний компонент гідроізоляційних матеріалів.

Бітуми є хімічно інертними до водних розчинів мінеральних солей, лугів та кислот, наприклад, вони добре чинять опір дії лугів (при концентрації до 45 %), фосфатній кислоті (при концентрації до 85 %), сульфатній (при концентрації до 50 %), соляній (при концентрації до 25 %). Менш стійкі бітуми в атмосфері, яка містить оксиди азоту, вони руйнуються при дії концентрованих розчинів кислот, розчиняються в органічних розчинниках. Відносна хімічна інертність бітумів дозволяє використовувати їх у будівництві для антикорозійного захисту.

Наведені вище властивості бітумів зумовили їх застосування в гідротехнічному й дорожньому будівництві, а також для виробництва покрівельних, гідроізоляційних та антикорозійних матеріалів.

 

6.3. Дьогтеві в’яжучі речовини

Дьогті – це в’язкі рідини чорного чи бурого кольору, які складаються з вуглеводнів та їх сірчаних, азотних і кисневих похідних, одержаних конденсацією пароподібних продуктів, що утворюються при розкладанні органічних матеріалів в умовах високої температури без доступу повітря.

За вихідною сировиною дьогті поділяють на кам’яновугільні, торф’яні, деревні й сланцеві, залежно від методу переробки сировини – на коксові й газові, а з урахуванням технології отримання – на сирі, відігнані й складні.

У дьогтях міститься велика кількість ненасичених вуглеводнів ароматичного ряду, які піддаються окислювальній полімеризації при контакті з киснем і водою, впливу ультрафіолетових променів. Атмосферостійкість дьогтевих матеріалів нижча порівняно з бітумними. Нестійкість дьогтів до процесів старіння пов’язана з випаруванням легких складових з дьогтю навіть при слабкому нагріванні на сонці, а також з тим, що сполуки, які містяться в ньому, є ненасиченими, тому легко вступають в хімічну взаємодію з речовинами зовнішнього середовища, змінюючи свій склад і структуру, що призводить до появи тріщин, крихкості та втрати водовідштовхувальних властивостей.

Однак дьогті (порівняно з бітумами) внаслідок великого вмісту речовин з полярними групами, відзначаються підвищеною адгезією до інших матеріалів. Вони мають вищу біостійкість, що пояснюється токсичністю фенолу, який міститься в їх складі. Дьогті використовують у тих самих галузях будівництва, що й бітуми, але їхнє застосування більш доцільне там, де є загроза виникнення біокорозії.




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 423; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.074 сек.