Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопрос 4. Ядерные силы и их свойства




Атомное ядро, состоящее из определенного числа протонов и нейтронов, является единым целым благодаря специфическим силам, которые действуют между нуклонами ядра и называются ядерными. Экспериментально доказано, что ядерные силы имеют очень большие значения, намного превышающие силы электростатического отталкивания между протонами. Это проявляется в том, что удельная энергия связи нуклонов в ядре намного больше работы сил кулоновского отталкивания. Рассмотрим основные особенности ядерных сил.

1. Ядерные силы являются короткодействующими силами притяжения. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Расстояние порядка (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил, с его увеличением ядерные силы быстро уменьшаются. На расстоянии порядка (2-3) м ядерное взаимодействие между нуклонами практически отсутствует.

2. Ядерные силы обладают свойством насыщения, т.е. каждый нуклон взаимодействует только с определенным числом ближайших соседей. Такой характер ядерных сил проявляется в приближенном постоянстве удельной энергии связи нуклонов при зарядовом числе А >40. Действительно, если бы насыщения не было, то удельная энергия связи возрастала бы с увеличением числа нуклонов в ядре.

3. Особенностью ядерных сил является также их зарядовая независимость, т.е. они не зависят от заряда нуклонов, поэтому ядерные взаимодействия между протонами и нейтронами одинаковы. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, энергии связи ядер гелия и тяжелого водорода – трития составляют соответственно 7,72 МэВ и 8,49 МэВ. Разность энергий связи этих ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10–15 м, что согласуется с величиной радиуса действия ядерных сил.

4. Ядерные силы не являются центральными и зависят от взаимной ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяниянейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде.

Сложный характер ядерных сил не позволяет разработать единую последовательную теорию ядерного взаимодействия, хотя было предложено много различных подходов. Согласно гипотезе японского физика Х. Юкавы (1907-1981), которую он предложил в 1935 г., ядерные силы обусловлены обменом - мезонами, т.е. элементарными частицами, масса которых приблизительно в 7 раз меньше массы нуклонов . По этой модели нуклон за время m - масса мезона) испускает мезон, который, двигаясь со скоростью, близкой к скорости света, проходит расстояние , после чего поглощается вторым нуклоном. В свою очередь второй нуклон также испускает мезон, который поглощается первым. В модели Х. Юкавы, таким образом, расстояние, на котором взаимодействуют нуклоны, определяется длиной пробега мезонов, что соответствует расстоянию около м и по порядку величины совпадает с радиусом действия ядерных сил.

Обратимся к рассмотрению обменного взаимодействия между нуклонами. Существуют положительный , отрицательный и нейтральный мезоны. Модуль заряда - или - мезонов численно равен элементарному заряду e. Масса заряженных - мезонов одинакова и равна (140 МэВ), масса - мезона равна 264 (135 МэВ). Спин как заряженных, так и нейтральных - мезонов равен 0. Все три частицы нестабильны. Время жизни - и - мезонов составляет 2,6 с, - мезона – 0,8·10-16 с. Взаимодействие между нуклонами осуществляется по одной из следующих схеме:

 

 

(22.6)

 

(22.7)
1. Нуклоны обмениваются мезонами:

. (22.8)

В этом случае протон испускает - мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон, затем такой же процесс протекает в обратном направлении. Таким образом, каждый из взаимодействующих нуклонов часть времени проводит в заряженном состоянии, а часть в нейтральном.

2. Нуклоны обмениваются - мезонами:

. (22.9)

3. Нуклоны обмениваются - мезонами:

 

, (22.10)

Все эти процессы доказаны экспериментально. В частности, первый процесс подтверждается при прохождении пучка нейтронов через водород. В пучке появляются движущиеся протоны, а соответствующее число практически покоящихся нейтронов обнаруживается в мишени.

Модели ядра. Отсутствие математического закона для ядерных сил не позволяет создать и единой теории ядра. Попытки создания такой теории наталкиваются на две серьезные трудности:

1. Недостаточность знаний о силах, действующих между нуклонами.

2. Чрезвычайную громоздкость квантовой задачи многих тел (ядро с массовым числом А представляет собой систему из А тел).

Эти трудности вынуждают идти по пути создания ядерных моделей, позволяющих описывать с помощью сравнительно простых математических средств определенную совокупность свойств ядра. Ни одна из подобных моделей не может дать абсолютно точное описание ядра. Поэтому приходится пользоваться несколькими моделями.

Под моделью ядра в ядерной физике понимают совокупность физических и математических предположений с помощью которых можно рассчитать характеристики ядерной системы, состоящей из А нуклонов. Было предложено и разработано много моделей разной степени сложности. Мы рассмотрим лишь наиболее известные из них.

Гидродинамическая (капельная) модель ядра была разработана в 1939г. Н. Бором и советским ученым Я. Френкелем. В ее основу положено предположение о том, что благодаря большой плотности нуклонов в ядре и чрезвычайно сильному взаимодействию между ними независимое движение отдельных нуклонов является невозможным и ядро представляет собой каплю заряженной жидкости плотностью . Как и в случае обычной капли жидкости, поверхность ядра может колебаться. Если амплитуда колебаний становится достаточно большой, происходит процесс деления ядра. Капельная модель дала возможность получить формулу для энергии связи нуклонов в ядре, пояснила механизм некоторых ядерных реакций. Однако эта модель не позволяет объяснить большинство спектров возбуждения атомных ядер и особую устойчивость некоторых из них. Это обусловлено тем, что гидродинамическая модель весьма приближенно отражает суть внутреннего строения ядра.

Оболочечная модель ядра разработана в 1940-1950 гг американским физиком М. Гепперт – Майер и немецким физиком Х. Иенсеном. В ней предполагается, что каждый нуклон движется независимо от других в некотором среднем потенциальном поле (потенциальной яме , создаваемом остальными нуклонами ядра. В рамках оболочечной модели функция не вычисляется, а подбирается так, чтобы можно было добиться наилучшего согласия с опытными данными.

Глубина потенциальной ямы составляет обычно ~ (40-50) МэВ и не зависит от количества нуклонов в ядре. В соответствии с квантовой теорией нуклоны в поле находятся на определенных дискретных уровнях энергии. Основное предположение создателей оболочечной модели о независимом движении нуклонов в среднем потенциальном поле находится в противоречии с основными положениями разработчиков гидродинамической модели. Поэтому характеристики ядра, которые хорошо описываются гидродинамической моделью (например, значение энергии связи), не находят объяснения в рамках оболочечной модели, и наоборот.

Обобщённая модель ядра, разработанная в 1950-1953гг, объединяет основные положения создателей гидродинамической и оболочечной моделей. В обобщенной модели предполагается, что ядро состоит из внутренней устойчивой части – остова, который образован нуклонами заполненных оболочек, и внешних нуклонов, движущихся в поле, создаваемом нуклонами остова. В связи с этим движение остова описывается гидродинамической моделью, а движение внешних нуклонов - оболочечной. За счет взаимодействия с внешними нуклонами остов может деформироваться, а ядро – вращаться вокруг оси, перпендикулярной оси деформации. Обобщенная модель позволила объяснить основные особенности вращательных и колебательных спектров атомных ядер, а также высокие значения квадрупольного электрического момента у некоторых из них.

Мы рассмотрели основные феноменологические, т.е. описательные, модели ядра. Однако для полного понимания характера ядерных взаимодействий, определяющих свойства и структуру ядра, необходимо создать такую теорию, в которой ядро рассматривалось бы как система взаимодействующих нуклонов.

 




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 559; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.