Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Окислительно-восстановительные реакции. Реакции, протекающие с изменением степеней окисления одного или нескольких реагирующих веществ, называются окислительно-восстанови-тельными




Реакции, протекающие с изменением степеней окисления одного или нескольких реагирующих веществ, называются окислительно-восстанови-тельными.

Степень окисления - это условный заряд атома в молекуле, рассчитанный исходя из предположения, что она состоит из ионов. При определении степени окисления пользуются следующими правилами:

1) степень окисления атома в молекулах простых веществ равна нулю, например:

Сl2 °, Na°, Н2°

2) степень окисления водорода во всех соединениях, кроме гидридов, равна +1;

3)степень окисления кислорода во всех соединениях, кроме фторида кислорода OF2 и перекисных соединений, равна -2;

4) молекула простого вещества электронейтральна, т. е. сумма степеней окисления всех атомов молекулы равна нулю.

Рассчитаем степень окисления хрома в бихромате калия K2Cr2O7

2 * (+1) + 2 x + 7 * (-2) = 0 2х = 12 x = +6

Атомы, молекулы или ионы, отдающие электроны, называются восстановителями, процесс отдачи электронов называется окислением. Атомы, молекулы или ионы, принимающие электроны, называются окислителями, процесс принятия электронов называется восстановлением. В окислительно-восстановительной реакции число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

Окислительно-восстановительные свойства зависят от строения цен-тральных атомов и проявляемой степени окисления. В периоде с ростом заряда ядра окислительные свойства возрастают, а восстановительные уменьшаются. В главных подгруппах сверху вниз окислительные свойства уменьшаются, восстановительные – увеличиваются.

Вещества, в состав которых входят элементы в высшей положительной степени окисления, являются окислителями, например:

+7 +6 +5 +6

КМnО4 К2Сr2О7 HNO3 H2SO4 (конц.)

 

Вещества, в состав которых входят элементы в отрицательной степени окисления, являются восстановителями, например:

 

-2 -3 -1

Н 2S HN3 KI

 

Вещества, с промежуточной степенью окисления центрального атома, могут быть и окислителями, и восстановителями, например:

-1 +4 +3

H2O2 Na2SO3 NaNO2

Глубина изменения степени окисления центральных атомов зависит от температуры, концентрации и активности реагентов, а также от рН среды. Например, перманганат-ион, в зависимости от рН среды, восстанавливается следующим образом:

Н+

¾¾¾¾¾¾® Mn 2+

Н2О

MnO4- ¾¾¾¾¾¾¾¾¾® MnO2

-

¾¾¾¾¾¾® MnO42-

Ход реакции зависит и от силы окислителя и восстановителя, например, тиосульфат-ион окисляется, в зависимости от силы окислителя, по схеме: сильный окислитель (С12)

¾¾¾¾¾¾¾¾¾® 2 S О4 2-

окислитель средней силы (Br2)

S2 О3 2- ¾¾¾¾¾¾¾¾¾® S + S О4 2-

слабый окислитель (12)

¾¾¾¾¾¾¾¾¾® S4 О6 2-

Способы составления уравнений

окислительно-восстановительных реакций

 

Применяется два метода составления уравнений окислительно-восста-новительных реакций: электронного баланса и электронно-ионный (метод полуреакций).

Метод электронного баланса

Этот метод основан на сравнении степеней окисления атомов, вхо-дящих в состав исходных и конечных веществ. Метод, в основном, при-меняется для составления уравнений реакций, идущих вне растворов.

Например:

1. Составляем схему реакции:

Fe S2 + O2 ® Fe2 O3 + S O2.

2. Определяем элементы, изменяющие степени окисления.

3. Составляем схему электронного баланса:

2 2 Fe +2 ­ 2 e = 2 Fe +3

4 S-1 - 20 e = 4S+4

11 O2 - 4e = 2 О-2

4. В уравнении записываем коэффициенты у окислителя и восстано-вителя.

4 Fe S2 + 11O2 = 2 Fe2 O3 + 8 S O2..

Недостатком метода является то, что баланс не отражает изменений, происходящих с атомами и молекулами в ходе реакции, а также трудности, возникающие при определении продуктов достаточно сложных реакции.

 

Электронно-ионный метод

Этот метод основан на составлении электронно-ионных уравнений для процессов и окисления и восстановления с последующим суммированием их в общее ионное уравнение.

При составлении уравнений реакций соблюдается следующая последо-вательность:

1. Записывается схема полуреакций, при этом сильные электролиты пишутся в виде ионов, а слабые - в виде молекул. Продукты реак-ции определяются на основании опыта или исходя из знания химии элементов, т.е. устойчивых степеней окисления.

2. Если исходное вещество содержит больше кислорода, чем продукт реакции, то избыточный кислород связывается в кислой среде ио-нами Н+, а в нейтральных и щелочных средах - молекулами воды.

3. Если исходное вещество содержит меньше кислорода, чем продукт реакции, то недостаток кислорода восполняется в кислой и нейт-ральной средах за счет молекул воды, а в щелочных средах - (за счет ионов гидроксила.

4. Следует помнить, что суммарные числа и знак зарядов ионов справа и слева от знака равенства должны быть равны.

5. Правильность составления реакции проверяем по кислороду.

В качестве примера рассмотрим следующую реакцию:

+7 +4

KМnO4 + Na2SO3 + H2 SO4 ®

KМnO4 - является окислителем, так как центральный атом (Mn) нахо-дится в высшей степени окисления, Na2SO3 содержит центральный атом (S) в степени окисления +4, это средняя степень, поэтому ион SO32 - мо-жет проявлять как окислительные, так и восстановительные свойства, одна-ко, в данной реакции окислитель KМnO4, следовательно, Na2SO3 – восстано-витель.

Восстановление иона МnO4¯ в кислой среде идет до Мn2+, окисление ио-на SO32 - - до SO42 -.

Учитывая сказанное, можно записать схему полуреакций: МnO4 ¯ ® Мn2+

SO32 - ® SO42 -

Следующий этап – составление уравнений полуреакций. Уравнивание в кислой среде производится с использованием ионов Н+ и молекул Н2О.

2 МnO4 ¯ + 8Н+ + 7е ® Мn2+ + 4Н2 О

5 SO32 - + Н2 О – 2е ® SO42 - + 2Н+

2МnO4 ¯ + 16Н+ +5SO32 - + 5Н2 О ® 2Мn2+ + 8Н2О + 5SO42 - + 10Н+

6 3

 

Записываем итоговое уравнение полуреакции, проставляя множители (как и в методе электронного баланса). После этого складываем левые и правые части уравнений полуреакций, умножая их предварительно на соот-ветствующие множители, и получаем общее ионное уравнение реакции. Если в левой и правой части уравнения есть одинаковые молекулы или ионы, их требуется сократить с учетом коэффициентов (помните, что ионы Н+ и ОН¯ при сложении Н2 О).

Для получения молекулярного уравнения реакции ко всем ионам добавляем ионы противоположного знака

2KМnO4 + 5Na2SO3 + 3Н2 SO4 ® 2MnSO4 + 5Na2SO4 + К2 SO4 +3Н2 О

Рассмотрим ход этой реакции в щелочной среде.

В щелочной среде, ион МnO4 ¯ будет восстанавливаться до МnO4 2-,

в отличие от кислой среды в щелочной среде при составлении электронно-ионных уравнений используются ионы OН¯ и молекулы Н2О.

+7 +4 + 6 +6

2KМnO4 + Na2SO3 + 2КОН® К2MnO4 + Na2SO4 + Н2 О

Производим все описанные выше действия и получаем ионное уравне-ние:

 

 

2 МnO4 ¯ +е ®МnO4 2-

1 SO32 - + 2ОН ¯ – 2е ® SO42 - + Н2 О

2МnO4 ¯ +5SO32 - + 2ОН¯ ® 2 МnO42- + SO42 - + Н2О

В нейтральной среде, ион МnO4 ¯ будет восстанавливаться до МnO2, уравнивание кислорода производится только молекулами Н2 О.

+7 +4 +4 +6

2KМnO4 + 3Na2SO3 + Н2O ® 2MnO2 + 3Na2SO4 + К2 SO4 +2КОН

 

2 МnO4 ¯ + 2 Н2О + 3е ® MnO2 + 4ОН¯

3 SO32 - + Н2 О – 2е ® SO42 - + 2Н+

2МnO4 ¯ + 4Н2 О + 3 SO32 - + 3Н2 О ® 2MnO2 + 8ОН¯ + 3 SO42 - + 6 Н+

2 6 Н2О

Окислительно-восстановительные реакции можно разделять на следующие типы:

1. Межмолекулярные – степени окисления меняют разные элементы,входящие в состав разных веществ.

Н2 + С12 = 2НС1

 

  +1 H2 – 2 ē = 2H
  -1 Cl2 + 2 ē = 2Cl

 

2. Внутримолекулярные – степень окисления меняют разные элементы, входящие в состав одного вещества.

 

+5 -2 -1 0

2KClO3 = 2KCl + 3O2

  +5 -1 Cl + 6 ē = Cl
  -2 0 2O - 4 ē = O2

 

3. Реакции диспропорционирования (самоокисления – самовосстанов-ления), в таких реакциях одинаковые частицы являются окислителем и восстановителем:

0 -1 +1

С122О = НСl + НСlО

  0 -1 Cl + 1 ē = Cl
  0 +1 Cl - 1 ē + Н2О = ClО- + Н+

 




Поделиться с друзьями:


Дата добавления: 2014-11-07; Просмотров: 507; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.032 сек.