Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие определенного интеграла




Интегрирование но частям.

Если u = u(x) vi v = v(x) - дифференцируемые функции, то фор мула интегрирования по частям имеет вид:

Способ интегрирования по частям применяется в том случае, когда интеграл в правой части формулы более прост для вычисления, чем исходный

Пример: Вычислить

Решение: обозначим lnx через u, тогда xdx = dv. Находим:

du = d(lnx) = (lnx)/, dx = dv/x,

Используя формулу интегрирования по частям, получаем:

=

Понятие определенного интеграла широко используется в математике и прикладных науках. С его помощью вычисляют площади, ограниченные кривыми, объемы тел произвольной формы и т.д. Рассмотрим задачу по определению площади криволинейной трапе­ции, приводящую к понятию определенного интеграла.

 

Фигура, ограниченная данной кривой у = f(x), отрезком [а,Ь] оси Ох и прямыми х = а и х = Ь, называется криволинейной трапецией

Предположим, что f(x) > 0 на отрезке [а,Ь], т.е. криволинейная трапеция расположена над осью Ох. Для вычисления площади S данной криволинейной трапеции разобьем отрезок [а,Ь] произвольным образом на п частей и обозначим точки деления:а = х0 <x1<x2<…<xn-1<xn = b Проведя из этих точек перпендикуляры до пересечения точек с кривой, получим значение функции в этих точках:

 

-

В результате площадь криволинейной трапеции окажется разбитой на сумму площадей элементарных криволинейных трапеций.

На отрезках Δхо, Δх1..., Δxn-1. возьмем произвольные точки Со, С1, С2,...,Cn-1 и проведем перпендикуляры из этих точек до пересечения с кривой у = f(x). Получим f(co), f(c1), f(с2),..., f(сn-1)

Далее постоим ступенчатую фигуру, состоящую из прямоугольников, имеющим основанием отрезки Δхо, Δх1..., Δxn-1, высотой –ординаты f(co), f(c1), f(с2),..., f(сn-1) Эта фигура ограничена ломаной линией. Площадь Sn полученной ступенчатой фигуры зависит от числа п и длины отрезков Δxi(i = О, 1, 2,..., п-1). При неограниченном увеличении числа п и уменьшении отрезка Δхi ломанная, ограничивающая ступенчатую фигуру, будет приближаться к площади трапеции S. Отсюда ясно, что площадью криволинейной трапеции, ограниченной линией у = f(х), следует называть предел, к которому стремиться переменная площадь Sn ступенчатой фигуры, ограниченной ломаной линией, при стремлении к нулю длины отрезка Δxi(i = О, 1, 2,..., п-1). Площадь Sn равна сумме площадей прямоугольников, построенных на отрезках:

Sn= f(c0)Δx0 + f(c1)Δx1 + …+f(cn-1)Δxn-1

 

Если теперь неограниченно увеличивая п частей разбиения так, чтобы длина отрезков Δxi(i = О, 1, 2,..., п-1) стремилась к нулю, то площадь криволинейной трапеции будет равна пределу суммы, каждое слагаемое которой равно произведению значения функции в точке отрезка f(ci) на величину этого отрезка Δхi;

Если существует конечный предел этой интегральной суммы, то этот предел называется определенным интегралом от функции f(x) на отрезке [а, Ь] и обозначают:

(читается «определенный интеграл от а до b от икс дэ икс»).

При этом f(x) называется подынтегральной функцией, х переменной интегрирования, числа а и b - соответственно нижним и
верхним пределом интегрирования.

Определенный интеграл есть число, его значение зависит от вида функции f(x) и значений верхнего и нижнего пределов. На основании выше изложенных формул можно записать: площадь криволинейной трапеции численно равна интегралу от функции, ограничивающей трапецию, взятому по основанию [а, Ь]:




Поделиться с друзьями:


Дата добавления: 2014-10-22; Просмотров: 441; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.