Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Коэффициент теплопроводности металлов при 20 oС




Скрытая теплота металлов

Удельная теплоемкость металлов

Температура плавления и кипения металлов

Металл Температура, Металл Температура,
плавления кипения плавления кипения
Олово     Серебро    
Свинец     Золото    
Цинк     Медь    
Магний     Железо    
Алюминий     Титан    

 

Удельная теплоемкость. Это количество энергии, необходимое для повышения температуры единицы массы на один градус. Удельная теплоемкость уменьшается с увеличением порядкового номера элемента в таблице Менделеева. Зависимость удельной теплоемкости элемента в твердом состоянии от атомной массы описывается приближенно законом Дюлонга и Пти:

ma cm = 6.

где, ma - атомная масса; cm - удельная теплоемкость (Дж/кг * oС).

В таблице 4 приведены значения удельной теплоемкости некоторых металлов.

Скрытая теплота плавления металлов. Это характеристика (таблица 5) наряду с удельной теплоемкости металлов в значительной степени определяет необходимую мощность плавильного агрегата. Для расплавления легкоплавкого металла иногда требуется больше тепловой энергии, чем для тугоплавкого.

Например, для нагревания меди от 20 до 1133 oС потребуется в полтора раза меньше тепловой энергии, чем для нагревания такого же количества алюминия от 20 до 710 oC.

Металл Температура,oС Удельная теплоемкость, Дж/кг * oС Металл Температура,oС Удельная теплоемкость, Дж/кг * oС
Магний 0-100 225 1,03 1,18 Цинк 0 св.420 0,35 0,51
Титан 0-100 440 0,47 068 Серебро 0 427 0,23 0,25
Медь 97,5 Св.1100 0,40 0,55 Олово 0 240 0,22 0,27
Алюминий 0-100 660 0,87 1,29 Золото 0-100 1100 0,12 0,15
Железо 0-100 1550 0,46 1,05 Свинец 0 300 0,12 0,14
Металл Скрытая теплота плавления, Дж/кг Металл Скрытая теплота плавления, Дж/кг
Свинец 23,2 Медь 203,7
Олово 60,9 Железо 277,2
Золото 63,0 Магний 369,6
Цинк 101,6 Алюминий 400,7
Серебро 105,0 Титан 436,8

 

Теплоемкость. Теплоемкость характеризует передачу тепловой энергии от оной части тела к другой, а точнее, молекулярной перенос теплоты в сплошной среде, обусловленный наличием градиента температуры. (таблица 6)

Металл Коэффициент теплопроводности, кВт/м * oС Металл Коэффициент теплопроводности, кВт/м * oС
Серебро 0,410 Цинк 0,110
Медь 0,386 Олово 0,065
Золото 0,294 Железо 0,067
Алюминий 0,210 Свинец 0,035
Магний 0,144 Титан 0,016

Качество художественного литья тесно связано с теплопроводностью металла. В процессе выплавке важно не только обеспечить достаточно высокую температуру металла, но и добиться равномерного распределения температуры во всем объеме жидкой ванны. Чем выше теплопроводность, тем равномернее распределена температура. При электродуговой плавке, несмотря на высокую теплопроводность большинства металлов, перепад температуры по сечению ванны достигает 70-80 oС, а для металла с низкой теплопроводностью этот перепад может достигать 200 oС и более.

Благоприятные условия для выравнивания температуры создаются при индукционной плавке.

Коэффициент теплового расширения. Эта величина, характеризующая изменение размеров образца длиной 1 м при нагревании на 1 oС, имеет важное значение при эмальерных работах (таблица 7)

Коэффициенты теплового расширения металлической основы и эмали должны иметь по возможности близкие значения, чтобы после обжига эмаль не растрескивалась. Большинство эмалей, представляющих твердый коэффициент оксидов кремния и других элементов, имеют низкий коэффициент теплового расширения. Как показала практика, эмали очень хорошо держаться на железе, золоте, менее прочно - на меди и серебре. Можно полагать, что титан - весьма подходящий материал для эмалирования.

 




Поделиться с друзьями:


Дата добавления: 2014-10-22; Просмотров: 1137; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.