Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Выбор приборов по метрологическим характеристикам




Особенности выбора приборов

Грамотный выбор средства измерения (в частности измеритель­ного прибора) из некоторого множества с различными характе­ристиками - важный вопрос, от правильного решения которого в значительной мере зависят достоверность результатов измерения (регистрации), эффективность работы специалистов-измерителей, общие затраты на проведение экспериментов.

Если есть возможность выбрать один прибор из нескольких од­нотипных, подходящих по диапазонам измерений и основным эксплуатационным характеристикам, то, прежде всего, следует руководствоваться метрологическими характеристиками приборов. Возможна априорная оценка погрешностей результатов. Если при­мерное значение измеряемой величины известно, условия прове­дения эксперимента достаточно определены, то можно и нужно оценить (т. е. определить хотя бы приблизительно) априори (т. е. до проведения эксперимента) инструментальные ожидаемые погреш­ности всех сравниваемых приборов.

Существуют два подхода к оценке погрешностей результатов измерений: детерминированный и вероятностный (статистический). Первый подход проще, но дает в общем случае завышенную оцен­ку погрешности, так как в нем рассматривается наихудший случай сочетания всех составляющих. Он иногда так и называется - метод наихудшего случая.

Рассмотрим детерминированный подход на примере выбора прибора для статического измерения действующего значения пе­риодического напряжения электрической сети. Допустим, предпо­лагаемый диапазон измеряемых действующих значений составляет 170...260 В. Номинальная частота измеряемого напряжения равна 50 Гц. Температура в эксперименте предполагается не выше +35 °С. Суммарная инструментальная относительная погрешность должна быть обеспечена на уровне не хуже 3...4 %.

Предположим, что в нашем распоряжении есть два цифро­вых мультиметра: ЦМ 1 и ЦМ 2. Их основные характеристики таковы.

ЦМ 1. Миниатюрный (Pocket-Size) простой и дешевый цифро­вой мультиметр с подходящим диапазоном измерений перемен­ных напряжений 0...500 В. Класс точности прибора (предельное значение относительной погрешности δп во всем диапазоне рабо­чих температур 0...45 °С) определен как δп = ±5,0 %.

ЦМ 2. Цифровой компактный (Hand-Held) мультиметр с подхо­дящим диапазоном измерения переменных напряжений 0...400 В. Класс точности прибора (предельное значение основной абсолют­ной погрешности Dп) на этом диапазоне:

Dп = ±(0,005 X к+ 0,005 X),

где X к- верхнее значение диапазона измерения (в нашем случае X к = = 400 В); X - предполагаемое измеренное значение, в данном случае Х = = 170...260 В.

Дополнительная погрешность определена как половина основ­ной на каждые 10 °С отличия от номинальной температуры 20 °С в пределах изменения температуры окружающей среды от 0 до 50 °С.

Как видим, классы точности приборов заданы по-разному (гра­фические зависимости значений абсолютных и относительных по­грешностей от значения измеряемой величины Х представлены на рис. 6.13 и 6.14). Поэтому для правильного сравнения метрологических возможностей необходимо привести погрешности прибо­ров к единой форме.

Оценим количественно для обоих приборов значения абсолют­ных D и относительных δ инструментальных погрешностей пред­полагаемых результатов измерения напряжения обоими прибо­рами, причем воспользуемся наиболее простым (детерминиро­ванным) подходом - методом наихудшего случая, т.е. опреде­лим максимально возможные значения погрешностей при задан­ных условиях.

ЦМ 1. Предельное значение суммарной (т.е. суммы основной и дополнительной составляющих) инструментальной абсолютной погрешности D1, В, для первого прибора:

D1 = δп X / 100,

где X -измеряемое значение.

Большему значению X (X = 260 В) соответствует большая по­грешность:

D1 = ± 5 · 260 / 100 = ± 13 В.

Относительная погрешность δ1 этого прибора постоянна во всем диапазоне измеряемых напряжений, известна и равна ±5 %.

ЦМ 2. Предельное значение основной абсолютной погрешно­сти D, В:

D = ±(0,005 X к + 0,005 X),

где Хк -верхнее значение диапазона измерения (в нашем случае Хк = = 400 В); X -предполагаемое измеренное значение в нашем варианте - диапазон значений Х = 170...260 В.

Меньшему значению измеряемого напряжения X соответствует погрешность D2о.м.:

D2о.м = ±(0,005 · 400 + 0,005 · 170) = ±(2,0 + 0,85) = ±2,85 В.

Большему значению X соответствует погрешность D2о.б:

D2о.б = ±(0,005 · 400 + 0,005 · 260) = ±(2,0 + 1,3) = ±3,3 В.

Дополнительная абсолютная погрешность D определяется для границ диапазона возможных значений X так:

D2д.м = [1/2 · D2о.м · (35 – 20)] / 10 = (± 1/2 ·2,8 · 15) / 10 = ± 2,1 В.

D2д.б = [1/2 · D2о.б · (35 – 20)] / 10 = (± 1/2 ·3,3 · 15) / 10 = ± 2,48 В.

Суммарные инструментальные абсолютные погрешности D2д.м (для меньшего значения X)и D2д.б (для большего значения X),равны:

D = D2о.м + D2д.м = ±(2,8 + 2,1) ≈ ±4,9 В;

D = D2о.б + D2д.б = ±(3,3 + 2,48) = ±5,78 ≈ ±5,8 В.

Предельные значения суммарной относительной погрешности δ2 для границ диапазона значений X = (170... 260) В составляют, соответственно:

δ = ±(4,9: 170) 100 ≈ ±2,9 %; δ = ±(5,78: 260)100 ≈ ±2,2 %.

Найденные оценки предельных значений суммарных абсолют­ных D и относительных δ инструментальных погрешностей сведе­ны в табл. 4.

Следует отметить, что реальные погрешности результатов из­мерений могут иметь любые конкретные значения, не превышаю­щие рассчитанных предельных значений.

Таким образом, можно сделать следующий вывод. В данном при­мере для эксперимента следует выбрать второй прибор (прибор ЦМ 2), так как он отвечает всем поставленным требованиям, в том числе обеспечивает требуемое значение предельной относи­тельной погрешности (2,9...2,2 % при требуемых 3...4 %) во всем диапазоне возможных значений измеряемого напряжения и тем­пературы окружающей среды.

Таблица 4

Оценки (округленно) суммарных инструментальных погрешностей

Прибор D, В δ, %
ЦМ 1 ЦМ 2 ± 13 ± 4,9 / ± 5,8 ± 5,0 ± 2,9 / ± 2,2

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 1478; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.037 сек.