Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Когда холодильнику жарко




 

Обычный холодильник, который есть теперь практически в каждом доме, не смог бы работать без химического вещества со специально подобранными физическими свойствами. Как работает холодильник? В нем используется так называемый круговой термодинамический цикл. Он осуществляется с помощью рабочего тела, которое называется холодильным агентом или просто хладагентом. Это может быть любой сжижающийся газ, в том числе пары воды, аммиак, смесь пропана и пропилена, фреоны (они же хладоны) и даже воздух. Обычно в бытовых холодильниках хладагентом служат фреоны – их известно множество. Вот лишь некоторые из них.

 

Несколько слов о цифровых обозначениях фреонов – для любознательных. Первая цифра – число атомов углерода минус 1 (для производных метана эта цифра опускается). Вторая цифра – число атомов водорода плюс 1. Третья – число атомов фтора (если оно больше 9, то перед ним ставится дефис). При наличии двойной связи в качестве четвертой цифры ставится 1, а при наличии атомов брома – буква В, за которой следует число этих атомов. При наличии изомеров приведенное обозначение соответствует наиболее симметричному соединению (наименьшая разность масс двух частей молекулы), постепенное снижение симметричности обозначается буквами a, b, c и т. д. Пусть, например, хладагентом служит фреон‑114 (1,1,2,2‑тетрафтор‑1,2‑дихлорэтан, CF2Cl–CF2Cl). При нормальном атмосферном давлении и комнатной температуре это газ (он сжижается при охлаждении до 3,5 °С). В компрессоре газообразный фреон сжимается (этот процесс сопровождается нагреванием). Нагретый газ, проходя через конденсатор (радиатор), отдает тепло окружающему воздуху, а сам охлаждается. Конденсатор расположен на задней стенке холодильника, в рабочем состоянии он всегда горячий; вот почему нельзя ставить холодильник вплотную к стенке – это ухудшает циркуляцию воздуха у конденсатора и отвод от него тепла.

Охлаждение сжатого газа приводит к его сжижению (конденсации); этот процесс также сопровождается отводом тепла в окружающую среду. Из конденсатора жидкий фреон поступает в специальное устройство – дроссель, назначение которого – резко снизить давление (это достигается путем прохождения вещества через небольшое отверстие с последующим увеличением объема); при этом часть жидкости испаряется, а ее температура резко падает. Каждый может легко почувствовать это явление, как говорится, собственной кожей, если будет интенсивно махать мокрой рукой. А ведь жидкий фреон испаряется намного легче, чем вода: для испарения одного грамма воды требуется 2260 Дж, а одного грамма фреона‑114 – всего 134 Дж, почти в 17 раз меньше! В испарителе (он расположен в морозильной камере холодильника) жидкость полностью выкипает, что сопровождается дальнейшим значительным понижением температуры. Пары холодного фреона откачиваются компрессором, сжимаются, и далее цикл повторяется.

Компрессор холодильника может создать определенное давление. Достаточно ли будет этого давления, чтобы сжатый газообразный хладагент после охлаждения в конденсаторе перешел в жидкое состояние? Это зависит и от температуры в помещении (сжатый газ охлаждается воздухом), и от мощности компрессора, и от природы хладагента. Для каждого соединения имеется своя зависимость температуры кипения жидкости (или температуры конденсации газа, что одно и то же) от давления. Пусть компрессор данного холодильника способен создать давление 4 атм. При таком давлении пары фреона‑114 сконденсируются в жидкость, если их температура будет не выше 45 °С. Так оно обычно и бывает, если на кухне не слишком жарко, например 25 °С. Но если температура в помещении повысится, положим, до 30 °С, пары фреона в конденсаторе не смогут остыть в достаточной степени, чтобы при 4 атмосферах превратиться в жидкость: для этого потребуется более высокое давление, которое компрессор не дает. Конечно, дросселирование сжатого газа в компрессоре газообразного фреона тоже приведет к некоторому понижению температуры. Однако охлаждение при этом будет значительно слабее, чем при испарении жидкости.

Теперь представим себе, что у другого, более мощного, холодильника компрессор может создать давление 6 атм. При таком давлении пары фреона‑114 будут конденсироваться в жидкость даже при температуре 60 °С, поэтому холодильник с таким компрессором будет работать и в том случае, когда на кухне очень жарко (например, в тропических странах). Вот почему в очень жаркое лето одни холодильники работают исправно, а другие – нет.

Если в холодильнике используется фреон‑12, зависимость его температуры кипения от давления и соответственно требования к компрессору будут другими. Температура кипения этого вещества составляет –29,8 °С при давлении 1 атм, 20 °С при 5,7 атм, 40 °С при 9,7 атм и 60 °С при 15,3 атм. Следовательно, для сжижения этого хладагента требуется (при данной температуре) более высокое давление.

Сравнительно высокие давления требуются и для сжижения аммиака: при атмосферном давлении 1 атм он кипит при температуре –33,6 °С, если повысить давление до 10 атм – при 25,7 °С, до 20 атм – при 50,1 °С, до 30 атм – при 66,1 °С. То есть если хладагентом служит аммиак, требуются значительно более мощные компрессоры (такие холодильники работают, например, на мясокомбинатах). Преимущество аммиака – в очень высокой теплоте испарения: 1 кг кипящего аммиака отбирает у окружающей среды 1370 кДж, тогда как 1 кг фреона‑12 – только 162 кДж. Однако аммиак – ядовитый газ с сильным запахом, что при его утечке создает большие проблемы. Фреоны лишены этих недостатков: они не ядовиты, не горят, не имеют запаха. В холодильных машинах применяют несколько десятков различных фреонов и их смесей. Наиболее распространены фреон‑12, фреон‑22 и фреон‑13 (последний применяется для создания очень низких температур, требующихся для хранения продуктов в течение длительного времени). В холодильных установках в нефтехимической и газовой промышленности применяются некоторые углеводороды: этан, пропан, этилен.

В заключение рассказа о холодильнике – старая задача: как изменится температура в комнате, если открыть дверцу стоящего в ней холодильника? Оказывается, эта задача имеет несколько решений. Обычно говорят, что правильный ответ – никак не изменится, потому что для создания холода внутри холодильника его агрегат нагревает воздух в помещении. В связи с этим вспоминается такая анекдотичная история. В один из американских журналов пришло письмо, автор которого, простая домохозяйка, внесла очень интересное предложение: «В последнее время так много говорят о глобальном потеплении. Может быть, стоит правительствам всех стран предписать своим гражданам в определенный день включить на сильное охлаждение все кондиционеры в домах и офисах и открыть все окна и двери?».

По поводу этого письма Г. И. Шифф, который преподавал в университете Мак‑Гилла в Монреале, рассказал одну поучительную историю. В начале 1950‑х гг. он задал своим студентам популярный вопрос: как изменится температура в помещении, если открыть дверцу холодильника. Один из студентов ответил, что в комнате станет холоднее. Преподаватель, конечно, начал снова терпеливо объяснять законы термодинамики, говорить про то, что «вырабатывая холод» внутри холодильника, агрегат в то же время заметно нагревает воздух в помещении. Однако студент упрямо стоял на своем: «Нет, в моей комнате станет холоднее! Там, где я живу, на все комнаты стоит один компрессор в подвале, поэтому холодильник у меня воздух не греет».

Преподавателю ничего не оставалось, как согласиться. Вероятно, студент жил в небольшом общежитии на несколько комнат, которое было оборудовано такими холодильниками. В некоторых наших научных учреждениях аналогично вакуум создается одним мощным насосом, к которому можно подключиться из разных помещений, а на краниках в лабораториях можно прочитать: «воздух», «газ», «вакуум». Значит, компрессор в упомянутом общежитии нагревал воздух только в подвале, а в комнатах «вырабатывал» только холод!

Кстати, можно придумать еще одну ситуацию. В любом современном холодильнике есть реле, которое выключает компрессор, когда температура внутри понизится до определенного значения (оно задается ручкой‑регулятором). Так, если регулятор стоит в положении, которое соответствует, положим, температуре в морозильной камере –10 °С, то как только температура в ней превысит это значение, специальный датчик даст команду реле включить компрессор. И холодильник будет «урчать» до тех пор, пока температура снова не понизится до заданного предела, после чего автоматически выключится. Такой режим «труда и отдыха» значительно удлиняет срок службы компрессора и экономит электро энергию.

Теперь представим себе, что холодильник очень старый и в нем нет реле. В таком холодильнике компрессор работает непрерывно. Пусть после длительной работы внутри этого холодильника накопилось много снега и льда. И если комната хорошо изолирована, то после открывания дверцы холодильника температура в комнате понизится, пока не растает весь снег со льдом. Правда, понижение температуры будет очень незначительным. Когда же весь лед растает, температура в комнате больше меняться не будет. А вот если открыть дверцу обычного холодильника, то температура в комнате повысится, так как компрессор будет работать более длительное время (или даже непрерывно).

«Почему взлетает шарик, наполненный гелием?»

 

Статью под таким названием опубликовал уже упоминавшийся профессор химии Раметте. Он рассказал интересную историю о споре, который случился у него с коллегой, преподавателем физики. Как‑то этот физик спросил его, как пишет Раметте, «со своей обычной вредной улыбочкой» о том, понимает ли химик молекулярно‑кинетическую теорию газов. Дальше между ними произошёл примерно такой диалог (в вольном пересказе и с комментариями химика).

– Раз вы понимаете основы теории, представьте себе полностью изолированную комнату. Будет ли воздух в ней гомогенным, то есть полностью однородным, а движения молекул хаотичными?

– Конечно, это известно всякому, кто слышал о молекулярно‑кинетической теории газов. Я имею в виду «гомогенный на макроуровне» (с этим типом надо быть настороже!).

– О’кей, тогда почему шарик, надутый гелием, взлетит в этой комнате к потолку?

– Я подозреваю, что вы к чему‑то клоните (недаром у него такая самодовольная улыбка, но я не поддамся). По закону Архимеда тело (а у нас это шарик с гелием), погруженное в жидкость (а у нас – в воздух), выталкивается с силой, равной весу вытесненной жидкости (воздуха). Гелий в шарике весит меньше, чем вытесненный воздух. Вот и все.

– Нет, не все! (Ишь, как уставился!) Это просто наблюдение, но вовсе не объяснение. То есть я хочу спросить, почему закон Архимеда «работает». Как объяснить на молекулярном уровне, почему шарик летит вверх? Или, если на то пошло, почему лодка плавает? Что за сила толкает шарик вверх? Думайте! (Наверное, он заметил мое замешательство и решил таким способом «подбодрить».)

– Ах, вот вы о чем! Ну это элементарно: причина в ударах молекул воздуха о шарик. Каждый такой удар передает шарику крошечный импульс, а так как таких ударов – мириады каждую секунду, они и толкают шарик вверх.

– Хм‑м, но ведь вы только что сказали, что молекулы движутся совершенно хаотично, а воздух гомогенный! Так разве частота ударов по шарику сверху и снизу не будет одинакова? В таком случае шарик не должен взлетать, а будет просто свободно парить в воздухе! (Вот злорадствует!) Именно так ведь с ним и будет на космической станции, где нет силы тяжести.

– Ну уж здесь вы не правы: ведь и на орбите земное притяжение никуда не исчезло, просто и сама станция, и все, что в ней, находятся в состоянии свободного падения, поэтому только кажется, что там нет силы тяжести. (Итак, счет один‑один!).

– Правильное замечание. (А чего покраснел‑то?) Ну а дальше что?

– Я думаю, что знаю, в чем дело. Во‑первых, нельзя говорить, что воздух полностью гомогенен. Из‑за притяжения Земли молекулы воздуха притягиваются вниз.

– Ха‑ха, тогда шарик должен испытывать больше ударов сверху, чем снизу, тогда почему же он взлетает, а не опускается на пол? М‑да, чтобы выиграть время, извинюсь, что мне надо срочно отлучиться на минутку, а сам подумаю. Ну вот, теперь можно и вернуться к столику.

– Решение такое. Из‑за гравитации воздух внизу более плотный, поэтому концентрация молекул воздуха больше у нижней части шарика, чем у верхней. Поэтому и частота ударов о шарик снизу больше, чем сверху.

– Мои поздравления! Вы первый из тех, кому я задавал этот вопрос и кто в конце концов пришел к правильному выводу. (Ну «в конце концов» он мог бы и не говорить… Ничего, сейчас он у меня попляшет, потому что я тоже придумал и для него задачку.)

– Спасибо, коллега, но есть один вопросик. Разве все эти рассуждения о градиенте плотности не применимы также и к гелию в шарике? А значит, молекулы гелия тоже ударяют о нижнюю часть шарика чаще, чем о верхнюю, только изнутри! Значит, эти удары должны уравновешивать внешние, со стороны молекул воздуха. (Ага, вот он и занервничал, и похоже, что сказать‑то ему нечего.)

– Ого, посмотрите на часы: мы так заболтались, а я опаздываю на занятия! В то же время завтра? Химик, кстати, тоже был рад передышке, поскольку у него самого не было ответа на поставленный вопрос. Вечером он просмотрел статьи, опубликованные в популярных журналах. Нашел статью о сравнении подъемной силы гелия и водорода, но в ней не было ничего для него нового. Тогда он в Интер нете в поисковой системе набрал atmospheric pressure equation, на что получил 76 200 ссылок. Четвертая из них привела его к статье Карла Нейва, преподавателя факультета астрономии и физики университета штата Джорджия: http://hyperphysics.phy‑astr.gsu.edu/hbase/ kinetic/barfor.html На этом сайте Раметте нашел известную баромерическую формулу, из которой можно приближенно рассчитать, как изменяется давление воздуха с высотой, если температуру на любой высоте принять равной 0 °С: Р = Р оexp(– h /8), где h – высота в километрах. При точных расчетах зависимости давления от высоты следует учитывать понижение температуры воздуха с высотой в тропосфере (далее температура вновь растет). Атмосферное давление зависит также от места измерения, температуры воздуха и погоды. Приведём зависимость среднегодового давления (в привычных миллиметрах ртутного столба) от высоты:

 

Если, например, в Москве давление в какой‑то день равно 745 мм рт. ст. (обычное для города давление), то в верхних этажах высотного здания оно будет на 20 мм ниже, на верхушке Останкинской телебашни оно снизится уже на 45 мм. Те, кто живет в горной местности, постоянно находятся в области пониженного давления. Так, в Алма‑Ате давление всегда понижено на 60–70 мм, а в Мехико – на 180 мм! Последнее особенно чувствовали спортсмены, когда в 1968 г. в этом городе проводились Олимпийские игры.

Но вернемся к статье Раметте и шарику с гелием. Средняя молекулярная масса воздуха М = 29, и если диаметр шарика 25 см, то отношение атмосферного давления в верхней и нижней точке P / P o = 0,999971. Именно эта ничтожная разница (всего 0,022 мм, что не фиксируется обычным барометром) и приводит к выталкивающей силе, достаточной, чтобы поднять легкий шарик (по расчетам Раметте, эта сила равна в данном случае 14 г). Гелий намного легче воздуха (М = 4), и для него внутри шарика P / P o = 0,999996. Так что разность в давлении внутри шарика меньше, чем снаружи. Соответственно меньше и разность в числе ударов молекул гелия и воздуха о верхнюю и нижнюю часть шарика.

Удовлетворенный химик с трудом дождался следующего дня, чтобы посрамить физика. Каково же было его разочарование, когда тот первым делом сказал: «Я тут немного подумал и пришел к простому выводу: так как молекулярная масса гелия намного меньше, чем средняя для воздуха, градиентом плотности гелия в шарике можно пренебречь». Более того, физик не искал барометрическую формулу в учебниках или в Интернете, а сам ее вывел! Перед тем как разойтись, физик все же взял свое в свойственной ему манере:

– Ну хорошо, вы разобрались с шариком, из чего следует, что проблема эта легкая. А теперь подумайте над такой. Вы привязываете шарик с тяжелым углекислым газом к потолку своего автомобиля, так что он свисает сверху до середины салона. А шарик с гелием вы привязываете к сиденью, и он тоже витает в центре автомобиля, но привязан снизу. Когда вы резко берете с места, ваше тело по инерции вдавливается в кресло. А что будет с двумя шариками? И что будет с ними при резком торможении?

Физик ушел с самодовольным видом, помахав небрежно рукой на прощание. Химик задумался. Но нельзя же признать себя побежденным! Проще всего посмотреть, как будут в действительности вести себя такие шарики, а уж потом можно подобрать этому объяснение. Задумано – сделано. Химику не составило большого труда надуть два шарика нужными газами (вместо дорогого гелия он вполне мог взять и водород, с которым эффект должен проявиться еще ярче) и в конце рабочего дня привязать их соответствующим образом в своей машине. Чтобы не отвлекаться, находясь за рулем, он посадил в машину в качестве наблюдателя своего внука. То, что произошло во время разгона и резкого торможения, не дало автору заснуть ночью до тех пор, пока он не нашел наблюдавшемуся явлению удовлетворительного объяснения. После чего решил обязательно спросить своего коллегу о механизме работы сифона (на молекулярном уровне!), а также почему ученые решили, что молекула воды имеет формулу Н2О. Дело в том, что редко кто может достаточно четко объяснить и то и другое! Тем более если заранее не известно, что водород и кислород состоят из двухатомных молекул. Над этим вопросом в XIX в. химики ломали головы десятки лет, и со времен Дальтона довольно долго формулу воды записывали как НО.

Что же показал эксперимент с шариками в автомобиле? Оказалось, что шарики в обоих случаях отклоняются в противоположных направлениях! Объяснить это можно так. При разгоне и торможении автомобиль движется с ускорением, и это ускорение эквивалентно гравитации, только повернутой на 90°. Значит, и шарики с тяжелым и легким газом будут вести себя так же, как в комнате, т. е. двигаться в разные стороны. Действительно, когда машина трогается с места, воздух из‑за инерции уплотняется у задней стенки, а при торможении – у передней (конечно, все окна в автомобиле должны быть при этом закрыты). Поэтому при разгоне легкий шарик движется вперед, а тяжелый – назад. При торможении же шарик с гелием отклоняется назад, а с углекислым газом – вперед. А вот смог ли физик ответить на вопросы о сифоне и формуле воды?




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 1715; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.038 сек.