Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Построение модели




Задача о коммивояжере.

Задача о радиоактивном распаде.

Транспортная задача.

Задача о баке с наименьшей площадью поверхности.

Задача о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v0 = 30 м/c под углом α = 450 к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

1. Построение модели. Пренебрегая размерами снаряда, будем считать его материальной точкой. Введем систему координат хОу, совместив ее начало О с исходной точкой, из которой выпущен снаряд ось х направим горизонтально, а ось у – вертикально (см. рис.).

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

, ,

где t – время, g = 10 м/c2 – ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи.

Рисунок 7.1

2. Решение математической задачи, к которой приводит модель. Выражая t через х из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

.

Эта кривая (парабола) пересекает ось х в двух точках: х1 = 0 (начало траектории) и х2 = (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и α, получим ответ: у = х – 90х2, S = 90 м.

3. Интерпретация полученных следствий из математической модели. у = х – 90х2 – уравнение, описывающее траекторию движения,расстояние между конечной и начальной точками S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

Требуется найти высоту h0 и радиус r0 жестяного бака объема V = 30 м3, имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

1. Построение модели. Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

, .

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

.

2. Решение математической задачи, к которой приводит модель. С математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r0, при которых производная обращается в ноль: . Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r0 ., следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h0 = 2r0. Подставляя в выражение для r0 и h0 заданное значение V, получим искомый радиус и высоту .

3. Интерпретация полученных следствий из математической модели. На изготовление цилиндрического бака пойдет меньше всего жести, если у него будет радиус и высота

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго – 70 т на заводы, причем на первый – 40 т, а на второй – 80 т.

Обозначим через aij стоимость перевозки 1 т муки с i -того склада на j -тый завод (i,j = 1,2). Пусть а11 = 1,2 р., а12 = 1,6 р., а21 = 0,8 р., а22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

1. Построение модели. Придадим задаче математическую формулировку. Обозначим через х11 и х12 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через х21 и х22 – со второго склада на первый и второй заводы соответственно. Тогда получим следующую систему уравнений:

Общая стоимость всех перевозок определяется формулой: f = 1,2x11 + 1,6x12 +0,8x21 + x22.

С математической точки зрения задача заключается в том, чтобы найти четыре числа х11, х12, х21 и х22, удовлетворяющие всем заданным условиям и дающие минимум функции f.

2. Решение математической задачи, к которой приводит модель. Решим систему уравнений (1) относительно хij (i,j = 1, 2) методом исключения неизвестных (метод Гаусса). Получим, что

а х22 не может быть определено однозначно. Так как (i,j = 1,2), то из системы (2) следует, что . Подставляя выражения из системы (2) для х11, х12, х21 в формулу для f, получим f = 148 – 0,2х22.

Эта функция линейная, с угловым коэффициентом k = -0,2 < 0. Следовательно, она убывает на всем промежутке [30; 70]. Значит, свое наименьшее (минимальное) значение эта функция принимает при х22 = 70. Соответствующие значения других неизвестных определяем с помощью системы (2): х11 = 40, х12 = 10, х21 = 0.

3. Интерпретация полученных следствий из математической модели. Стоимость перевозок будет минимальной, если с первого склада на первый хлебозавод будет поставляться 40 т муки, на второй хлебозавод – 10 т муки, а вся мука со второго склада будет поставляться только на второй хлебозавод.

 

Пусть N(0) – исходное количество атомов радиоактивного вещества, а N(t) – количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N/(t) пропорциональна N(t), то есть N/(t) = -lN(t), l > 0 – константа радиоактивности данного вещества.

В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)е-lt. Время Т, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения Т надо положить в формуле . Тогда . Например, для радона , и, следовательно, Т = 3,15 сут.

 

Коммивояжеру, живущему в городе А1, надо посетить города А2, А3 и А4, причем каждый город точно один раз, и затем вернуться обратно в А1. Известно, что все города попарно соединены между собой дорогами, причем длины дорог bij между городами Ai и Aj (i,j = 1, 2, 3, 4) таковы: b12 = 30, b14 = 20, b23 = 50, b24 = 40, b13 = 70, b34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 7.2). Получился граф – математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки – числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V1, V2,…,Vk, V1 такая, что вершины V1, V2,…,Vk – различны, а любая пара вершин Vi, Vi+1 (i = 1, …, k-1) и пара V1, Vk соединены ребром. Рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна.

Рисунок 7.2

2. Решение математической задачи, к которой приводит модель. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в А1: 1) А1, А4, А3, А2, А1; 2) А1, А3, А2, А4, А1; 3) А1, А3, А4, А2, А1. Найдем теперь длины этих циклов (в км): L1 = 160, L2 = 180, L3 = 200. Итак, маршрут наименьшей длины – это первый.

Заметим, что если в графе п вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно . Следовательно, в нашем случае имеется ровно три цикла.

3. Интерпретация полученных следствий из математической модели. Порядок посещения городов, при котором длина соответствующего пути коммивояжера минимальна, следующий: А1, А4, А3, А2, А1 или в обратном порядке.

 




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 1029; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.