Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

I. Изучение нового материала




Материал пунктов 118 и 119 рекомендуется изложить в виде небольшой лекции с применением разнообразных иллюстративных средств (плакаты, таблицы, рисунки, разнообразные геометрические тела); для демонстрации графического материала использовать графопроектор.

1. До сих пор мы занимались планиметрией – изучали свойства плоских геометрических фигур, то есть фигур, целиком расположенных в некоторой плоскости. Но окружающие нас предметы в большинстве своем не являются плоскими. Любой реальный предмет занимает какую-то часть пространства.

2. Раздел геометрии, в котором изучаются свойства фигур в пространстве, называется стереометрией. Это слово происходит от греческих слов «стерео» – объемный, пространственный и «метрео» – измерять.

3. В стереометрии наряду с простейшими фигурами – точками, прямыми и плоскостями – рассматриваются геометрические тела и их поверхности. Представление о геометрических телах дают окружающие нас предметы. Например, кристаллы имеют форму геометрических тел, поверхности которых составлены из многоугольников. Такие поверхности называются многогранниками.

4. Рассмотрим простейший многогранник – куб (рис. 335, а) и модель куба.

Сколько граней, ребер и вершин имеет куб?

5. Познакомить учащихся с другими геометрическими телами:

1) шаром (рис. 335, б), такую же форму имеет футбольный мяч;

2) цилиндром (рис. 335, в), эту форму имеет консервная банка.

6. Ввести понятие границы геометрического тела; понятие секущей плоскости тела; понятие сечения тела (рис. 336).

7. Изображение геометрических тел на чертеже (рис. 337, а, б, в).

На доске и в тетрадях учащиеся выполняют рисунки параллелепипеда, пирамиды, конуса, цилиндра.

8. Вспомним понятие многоугольника в планиметрии (рис. 338, а б). На модели прямоугольного параллелепипеда определим количество граней, ребер, вершин.

Форму прямоугольного параллелепипеда имеют коробки, комнаты и многие другие предметы.

9. Многогранник – это поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. Это тело также называют многогранником (рассмотреть по учебнику рис. 339).

Тетраэдр составлен из четырех треугольников; по-гречески «тетра» – четыре.

Октаэдр составлен из восьми треугольников; по-гречески «окто» – восемь.

10. Многоугольники, из которых составлен многогранник, называются его гранями. При этом предполагается, что никакие две соседние грани многогранника не лежат в одной плоскости. гранями прямоугольного параллелепипеда являются прямоугольники, а гранями тетраэдра и октаэдра – треугольники. Стороны граней называются ребрами, а концы ребер – вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника (рис. 339, а).

11. Многогранники бывают выпуклыми и невыпуклыми (рис. 339 и рис. 340).

Выпуклый многогранник характеризуется тем, что он расположен по одну сторону от плоскости каждой своей грани.




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 978; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.