Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электронные вычислительные машины




Электронные вычислительные машины (ЭВМ) представляют собой устройство, предназначенное для выполнения вычислительных операции по заданной программе.

Современная электронная вычислительная машина – это сложнейший комплекс устройств, восхищающий своим технологическим совершенством и разнообразием физических принципов работы.

Вычислительные машины в зависимости от способа представления информации подразделяются на две большие группы: вычислительные машины непрерывного действия, или аналоговые вычислительные машины (АВМ), и вычислительные машины дискретного действия, или цифровые вычислительные машины (ЦВМ).

В АВМ входные, выходные и промежуточные величины представляются в виде токов или напряжений, значения которых в определенном масштабе соответствуют числом.

Математические действия над числами заменяются в АВМ различными преобразованиями электрических токов или напряжений.

Подлинный прогресс науки, называемой математической логикой, был достигнут в середине XIX в. Прежде всего благодаря труду английского логика Джорджа Буля «Математический анализ логики». Он перенес на логику законы и правила алгебраических действий, ввел логические операции, предложил способ записи высказываний в символической форме.

Современная математизированная формальная логика представляет собой обширную научную область и находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (анализ и синтез автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Формы мышления. Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.

Логика- это наука о формах и способах мышления.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, высказывание и умозаключение.

Понятие выделяет существенные признаки объекта, которые отличают его от других объектов. Объекты, объединенные понятием, образуют некоторое множество. Например, понятие «компьютер» объединяет множество электронных устройств, которые предназначены для обработки информации и обладают монитором и клавиатурой. Даже по этому короткому описанию компьютер трудно спутать с другими объектами, например с механизмами, служащими для перемещения по дорогам и хранящимися в гаражах, которые объединяются понятием «автомобиль».

Понятие - это форма мышления, фиксирующая основные, существенные признаки объекта. Понятие имеет две стороны: содержание и объем. Содержания понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов. Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений). Высказывание строится на основе понятий и по форме является повествовательным предложением. Высказывание может быть ложным или истинным. Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношение реальных вещей. Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности.

Высказывание – это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо ложно, либо истинно.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (высказываний), получать заключение, то есть новое знание. Примером могут быть геометрические доказательства.

Умозаключение – это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

Алгебра логики (раздел высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.

В алгебре логики над высказываниями можно производить различные операции (подобно тому в алгебре чисел определены операции сложения, деления, возведения в степень над действительными числами).

Обозначать высказывания будем прописными буквами. Если высказывание А истинное, то будем писать «А=1» и говорить «А истинно». Если высказывание А ложное, то будем писать «А=0» и говорить «А ложно».

Для структурно-функционального описания логических схем, составляющих основу любого дискретного вычислительного устройства, ЭВМ или ВС в целом, используется аппарат булевой алгебры, созданной в 1854 г. Дж. Булем как попытка изучения логики мышления математическими методами. Впервые практическое применение булевой алгебры было сделано К. Шенноном в 1938 г. для анализа и разработки релейных переключательных сетей, результатом чего явилась разработка метода представления любой сети, состоящей из совокупности переключателей и реле, математическими выражениями и принципов их преобразования на основе правил булевой алгебры. Ввиду наличия аналогий между релейными и современными электронными схемами аппарат булевой алгебры нашел широкое применение для анализа, описания и проектирования последних. Использование булевой алгебры позволяет не только более удобно оперировать с булевыми выражениями (представляющими те или иные электронные узлы), чем над схемами или логическими диаграммами, но и на формальном уровне путем эквивалентных преобразований и базовых теорем упрощать их, давая возможность создавать экономически и технически более совершенные электронные устройства любого назначения. Являясь основным средством анализа, разработки и описания структурно-функциональной архитектуры современной ВТ, булева алгебра является обязательной составной частью курса “компьютерной информатики”, а также целого ряда разделов вычислительных наук.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 393; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.