Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекции 9,10. Биологические концепции природы 2 страница




6. Наследственность. Живые организмы способны переда­вать неизменными признаки и свойства из поколения в поколение с помощью носителей информации – молекул ДНК и РНК.

7. Изменчивость. Живые организмы способны приобретать новые признаки и свойства. Изменчивость создает разнообразный исходный материал для естественного отбора, т.е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что в свою очередь приводит к появлению новых форм жизни, новых видов организмов.

8. Самовоспроизведение (размножение). Живые организмы способны размножаться – воспроизводить себе подоб­ных. Благодаря размножению осуществляются смена и преемственность поколений. Принято различать два основных типа размножения:

Бесполое размножение (участвует одна особь) наиболее широко распространено среди прокариот, грибов и растений, но встречаются и у различных видов животных. Основные формы бесполого размножения: деление, спорообразование, почкование, фрагментация, вегетативное размножение и клонирование (клон – генетическая копия одной особи).

Половое размножение (обычно осуществляется двумя особями) характерно для подавляющего большинства живых организмов и имеет огромное биол. значение. Вся совокупность явлений, связанных с половым размножением, складывается из 4 основных процессов: образование половых клеток – гамет (гаметогенез); оплодотворение (сингамия – слияние гамет и их ядер) и образование зиготы; эмбиогенез (дробление зиготы и формирование зародыша); дальнейший рост и развитие организма в послезародышевый (постэмбриональный) период. Биологическое значение полового размножения заключается не только в самовоспроизведении особей, но и в обеспечении биологического разнообразия видов, их адаптивных возможностей и эволюционных перспектив. Это позволяет считать половое размножение биологически, более прогрессивным, чем бесполое. Половое размножение осуществляется с помощью специализированных половых клеток – гамет, имеющих вдвое меньшим числом хромосом, чем соматические клетки. Женские гаметы называют яйцеклетками, мужские – сперматозоидами. Для некоторых групп организмов характерны так называемые нерегулярные типы полового размножения: партеногенез (развитие зародыша из неоплодотворенной яйцеклетки – пчелы, муравьи, термиты, тля, дафнии), апомиксис (развитие зародыша из клеток зародышевого мешка или неоплодотворенной яйцеклетки у цветковых растений) и др.

9. Индивидуальное развитие (онтогенез). Каждой особи свойственен онтогенез – индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). Развитие сопровождается ростом.

10. Эволюционное развитие (филогенез). Живой материи в целом свойственен филогенез – историческое развитие жизни на Земле с момента ее появления до настоящего времени.

11. Адаптации. Живые организмы способны адаптироваться, то есть приспосабливаться к условиям окружающей среды.

12. Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).

13. Целостность и дискретность. С одной стороны, вся живая материя целостна, определенным образом организована и подчиняется общим законам; с другой стороны, любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов. Любой организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т.е. обособленных или отграниченных в пространстве, но, тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство.

14. Иерархичность. Начиная от биополимеров (белков и нук­леиновых кислот) и заканчивая биосферой в целом, все живое находится в определенной соподчиненности. Функциони­рование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.

15. Негэнтропия. Согласно II закону термодинамики все процессы, самопроизвольно протекающие в изолированных системах, развиваются в направлении понижения упорядоченности, т.е. возрастания энтропии. В то же время по мере роста и развития живые организмы, наоборот, усложняются, что, казалось бы, противоречит второму началу. На самом деле это мнимое противоречие. Дело в том, что живые организмы представляют собой открытые системы. Организмы питаются, поглощая при этом энергию извне, выделяют в окружающую среду тепло и продукты жизнедеятельности, наконец, погибают и разлагаются. По образному выражению Э. Шредингера, «организм питается отрицательной энтропией». Совершенствуясь и усложняясь, организмы вносят хаос в окружающий их мир.

Кроме перечисленных, иногда выделяют физиологические свойства, присущие живому – рост, развитие, выделение и т.д.

Химический состав, строение и воспроизведение клеток. Из 112 химических элементов Периодической системы Д.И. Менделеева в состав организмов входит более половины. Химические элементы входят в состав клеток в виде ионов или компонентов молекул неорганических и органических веществ. Относительно простые химические соединения, которые встречаются как в живой, так и в неживой природе (в минералах, природных водах), называют неорганическими (или минеральными) веществами. Многообразные соединения углерода, синтезируемые преимущественно живыми организмами, называют органическими веществами: углеводы, белки, липиды, нуклеиновые кислоты и др.

Вода – преобладающий компонент всех живых организмов; среднее содержание в клетках большинства организмов составляет около 70%. Вода выполняет следующие функции: универсальный растворитель, среда для протекания биохимических реакций, терморегулятор (поддерживает тепловое равновесие клеток благодаря высокой теплоемкости и теплопроводности), осуществляет транспорт веществ, определяет осмотическое давление, вода – источник кислорода, выделяющегося при фотосинтезе.

Минеральные вещества – составляют до 1,5% сырой массы клетки. Наиболее важны H+, K+, Ca2+, Mg2+, HPO42–, H2PO4, Cl, HCO3. Функции неорганических веществ: образуют межмембранный потенциал, поддерживают рН в клетке (буферные системы HPO42–, H2PO4 и CO32–, HCO3), создают осмотический потенциал, образуют скелет позвоночных, раковины моллюсков, активируют ферменты.

Углеводы (сахариды) – Cn(H2O)m, в клетке от 0,2 до 2% в расчете на сухую массу. Моносахариды: глюкоза, фруктоза, рибоза, дезоксирибоза. Дисахариды: мальтоза, лактоза, сахароза. Полисахариды: гликоген, крахмал, целлюлоза, хитин. Биологическое значение: энергетическая, структурная, запасающая, защитная функции.

Липиды – нерастворимые в воде органические вещества (гидрофобны), содержание в клетках от 1 до 15%, в жировых до 90%. К липидам относятся: жиры (сложные эфиры глицерина и высокомолекулярных жирных кислот), воска, стеролы. Биологическое значение: энергетическая, запасающая, структурная, защитная, регуляторная, функции.

Белки (полипептиды) – полимеры, состоящие из 20 аминокислот. Растения способны самостоятельно синтезировать все аминокислоты, а животные лишь часть из них, поэтому остальные, называемые незаменимыми, они должны получать с пищей. Биологическое значение: каталитическая, структурная, регуляторная, защитная, транспортная, энергетическая функции. В строении белков выделяют несколько структур: первичная структура (определяется последовательностью аминокислот), вторичная структура (вид спирали, возникает за счет водородных связей), третичная структура (вид глобула, образована за счет дисульфидных, ионных и гидрофобных связей), четвертичная структура (объединение нескольких третичных структур, удерживающихся ионными, водородными и гидрофобными связями – гемоглобин). Изменение свойств, конформации и биологической активности белка называют денатурацией.

Нуклеиновые кислоты – моно – или полинуклеотиды, выполняющие в клетке очень важные функции. Мононуклеотиды выступают в качестве источника энергии – АТФ, полинуклеотиды обеспечивают хранение и передачу наследственной информации – ДНК и РНК. Мононуклеотид состоит из азотистого основания (пурунового: аденин – А, гуанин – Г или пиримидинового: цитозин – Ц, тимин – Т, урацил – У), пятиуглеродного сахара (рибозы или дезоксирибозы) и остатков фосфорной кислоты. Строение молекулы ДНК расшифровали Дж. Уотсон и Ф. Крик.

В нуклеотиде ДНК содержится одно из четырех азотистых оснований – аденин А, гуанин Г, тимин Т или цитозин Ц, сахар – дезоксирибоза и остаток фосфорной кислоты. В нуклеотиде РНК содержится одно из четырех азотистых оснований – А, Г, У (вместо Т) или Ц, сахар – рибоза и остаток фосфорной кислоты. ДНК большинства живых организмов (кроме вирусов) состоят из двух антипараллельно направленных полинуклеотидных цепей, связанных водородными связями между азотистыми основаниями по принципу комплементарности: А=Т, Г≡Ц.

РНК – разнообразные по размерам, структуре и функциям одноцепочечные молекулы. Все молекулы РНК являются копиями определенных участков ДНК. Выделяют три вида РНК: мРНК (иРНК) – матрица для синтеза молекул белка; рРНК – составляет 50% субъединиц рибосом (50% белок); тРНК – присоединяют определенную аминокислоты к антикодону и транспортируют ее к месту сборки полипептида.

Одним из крупнейших обобщений XIX в. стала клеточная теория, изложенная в трудах Т. Шванна, М. Шлейдена и Р. Вирхова. Современная клеточная теория включает следующие положения:

− все живые организмы состоят из клеток (исключение составляют вирусы); клетки одноклеточных и многоклеточных животных и растительных организмов сходны (гомологичны) по строению, химическому составу, принципам обмена веществ и основным проявлениям жизнедеятельности.

− все живые организмы развиваются из одной или группы клеток; каждая новая клетка образуется в результате деления сходной (материнской) клетки.

− в сложных многоклеточных организмах клетки дифференцируются, специализируясь по выполнению определенной функции; клетки объединены в ткани и органы, функционально вязанные в системы, и находятся под контролем межклеточных, гуморальных и нервных форм регуляции.

Среди всего многообразия ныне существующих на Земле организмов выделяют вирусы, не имеющие клеточного строения, все остальные организмы представлены разнообразными клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический.

Клетки прокариотических организмов устроены сравнительно просто. В них нет морфологически обособленного ядра, единственная хромосома образована кольцевидной ДНК и находится в цитоплазме, мембранные органеллы отсутствуют (их функцию выполняют различные впячивания плазматической мембраны). К надцарству прокариот относят бактерий. Одну из групп фотосинтезирующих бактерий (синезеленые водоросли, или цианобактерии) раньше относили к водорослям. Однако в настоящее время их рассматривают как специфическую группу бактерий.

Большинство современных живых организмов относится к одному из трех царств – растений, грибов и животных, объединяемых в надцарство эукариот.

Для растительных клеток характерно наличие толстой целлюлозной клеточной стенки, различных пластид, крупной центральной вакуоли, смещающей ядро к периферии. Клеточный центр высших растений без центриоли. В качестве резервного питательного углевода клетки растений запасают крахмал.

В клетках грибов клеточная оболочка содержит хитин, в цитоплазме имеется центральная вакуоль, отсутствуют пластиды. Главным резервным полисахаридом является гликоген.

Животные клетки имеют, как правило, тонкую клеточную стенку, не содержат пластид и центральной вакуоли, для клеточного центра характерна вакуоль. Запасным углеводом является гликоген.

В зависимости от количества клеток, из которых состоят организмы, последние делят на одноклеточные и многоклеточные. Одноклеточными являются все прокариоты, а также простейшие, некоторые зеленые водоросли и грибы. Несмотря на индивидуальные особенности, все клетки построены по единому плану и имеют много общих черт.

Эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра. Снаружи клетка окружена оболочкой, основу которой составляет плазматическая мембрана или плазмолемма. Мембраны состоят из белков и липидов (бимолекулярный слой). Мембраны, обладают свойством избирательной проницаемости (способны пропускать одни веществ и не пропускать другие), а также свойством самопроизвольного восстановления целостности структуры. Углеводный компонент в составе клеточных оболочек разных клеток выражен в различной степени: в животных клетках он относительно тонок и называется гликокаликсом, в растительных клетках углеводный компонент сильно выражен и представлен целлюлозной клеточной стенкой.

Внутреннее содержимое клетки представлено цитоплазмой, состоящей из основного вещества, или гиалоплазмы (т.е. водный раствор неорганических и органических веществ), и находящихся в нем разнообразных внутриклеточных структур. Последние представлены: включениями – относительно непостоянные компоненты, например запасные питательные вещества (зерна крахмала, белков, капли гликогена) или продукты, подлежащие выведению из клетки (гранулы секрета); органоидами – постоянные и обязательные компоненты большинства клеток, имеющие специфическую структуру и выполняющие жизненно важные функции.

К органоидам клетки не имеющим мембранного строения относят рибосомы, микрофиламенты. микротрубочки, клеточный центр.

Рибосомы – структуры, состоящие из примерно равных по массе количеств рРНК и белка, представлены субъединицами: большой и малой. Функция рибосом – сборка белковых молекул.

Микротрубочки и микрофиламенты – нитевидные структуры, состоящие из различных сократительных белков, обуславливающие двигательные функции клетки.

Клеточный центр (центросома) состоит из двух центриолей, участвующих в формировании митотического веретена клетки. Каждая центриоль имеет вид полого цилиндра, стенка которого образована 9 триплетами микротрубочек.

К мембранным органоидам эукариотической клетки относят структуры с одинарной мембраной – ЭПС, комплекс Гольджи, лизосомы, а также органоиды с двумя мембранами – митохондрии и пластиды. По симбиотической гипотезе о происхождении эукариотической клетки, митохондрии и пластиды являются потомками древних прокариот. Эти органеллы полуавтономны, т.к. обладают собственным аппаратом биосинтеза белка (ДНК, РНК, ферменты).

ЭПС (эндоплазматическая сеть) – разветвленная система полостей, трубочек и каналов. ЭПС – место синтеза белков и липидов, а также их транспорта внутри клетки. На мембране шероховатой ЭПС располагаются рибосомы (синтез белков). Мембраны гладкой ЭПС содержат ферменты синтеза почти всех липидов.

Аппарат Гольджи состоит из дисковидных мембранных полостей и отшнуровывающихся от них микропузырьков. Попадающие в АГ белки и липиды сортируются, упаковываются в секреторные пузырьки и транс­портируются к различным внутриклеточным структурам или за пределы клетки. Мембраны аппарата Гольджи способны образовывать лизосомы.

Лизосомы выполняют функцию внутриклеточного пере­варивания макромолекул пищи и чужеродных компонентов, поступающих в клетку. Для осуществления этих функций лизосомы содержат около 40 ферментов, разрушающих белки, нуклеиновые кислоты, липиды, углеводы.

Митохондрии важнейшие органоиды клетки, осуществляющие аэробное дыхание, в котором образуется основная часть молекул АТФ. Митохондрии называют энергетическими станциями клетки. Внутренняя мембрана образует многочисленные выросты кристы, пространство между ними заполнено матриксом, содержащим различные ферменты, нуклеиновые кислоты, рибосомы.

Пластиды присутствуют только в растительных клетках. Известны три типа пластид: хлоропласты, хромопласты и лейкопласты. Бесцветные лейкопласты выполняют запасающую функцию в корнях, семенах, клубнях, листьях. Желто-оранжевые хромопласты определяют окраску плодов, цветков, листьев. Зеленые хлоропласты на внутренней мембране имеют выросты – ламеллы, на которых расположены уплощенные пузырьки – тилакоиды, сложенные в стопки – граны. В мембранах гран находится хлорофилл, обеспечивающий протекание световой фазы фотосинте­за.

Специализированными органоидов общего значения являются сократительные вакуоли, синаптические пузырьки нервных клеток, микроворсинки эпителиальных клеток, реснички и жгутики.

Клеточное ядро – наиболее важный компонент эукариотических клеток (нет в проводящих клетках флоэмы и эритроцитах). Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки. В состав ядра входят ядерная оболочка и кариоплазма, содержащая хромосомы. Хромосомымолекулами ДНК в комплексе с белками. Число хромосом в клетках каждого биологического вида постоянно. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они непарны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), набор хромосом в соматических клетках – диплоидным (2n).

Диплоидный набор хромосом конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называется кариотипом.

Кариотип человека представлен 46 хромосомами (23 пары): 44 аутосомы и 2 половые хромосомы (у женщины две одинаковые X-хромосомы, у мужчины – Х и Y-хромосомы). Пол, который образуют гаметы одинаковые по половой хромосоме, называют гомогаметным, а пол образующий разные гаметы – гетерогаметным.

У млекопитающий (в т.ч. человека), червей, большинства членистоногих, земноводных, некоторых рыб гомогаметным является женский пол, а гетерогаметным – мужской.

Одним из положений клеточной теории является постулат «omnis cellula e cellula» – каждая клетка из клетки. Деление клеток – жизненно важный процесс для всех организмов. В человеческом организме, состоящем примерно из 1013 клеток, каждую секунду должны делиться несколько миллионов из них. Существует несколько типов деления клеток.

Митоз – универсальный способ деления эукариотических кле­ток, состоящий из четырех фаз: профазы, метафазы, анафазы и телофазы. При митозе образуются клетки с наследственной информацией, которая качественно и количественно идентична информации материнской клетки

Амитоз – прямое деление ядра две более или менее равные части, но дочерние клетки получают наборы неидентичные материнскому. Таким способом делятся стареющие и патологически измененные клетки, а также клетки эндосперма и кожного эпителия.

Мейоз (от греч. «мейозис» - уменьшение) – своеобразный способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз является центральным звеном гаметогенеза у животных и спорогенеза у растений. Мейоз состоит из двух последовательных делений, которым предшествует однократная редупликация ДНК. После двух последовательных мейотических делений из одной клетки с диплоидным набором двухроматидных хромосом (1n4с) образуются четыре клетки с гаплоидным набором однохроматидных хромосом (nс). Мейоз – основа комбинативной изменчивости, обеспечивая генетическое разнообразие гамет благодаря процессам кроссинговера (обмена участками между гомологичными хромосомами в профазе I мейотического деления), расхождения и комбинаторики отцовских и материнских хромосом.

Происхождение жизни на Земле. Существует несколько гипотез о происхождении жизни на Земле.

Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира придерживаются последователи почти всех наиболее распространенных религиозных учений. Ни доказать, ни опровергнуть креационистическую концепцию в настоящее время невозможно.

Гипотеза вечности жизни – жизнь, как и сама Вселенная, существовала всегда, и будет существовать вечно, не имея начала и конца. Вместе с тем отдельные тела и образования – галактики, звезды, планеты, организмы – возникают и погибают, т.е. существование во времени ограничено. Жизнь могла распространяться от одной галактики к другой и эта идея «заноса» на Землю жизни из Космоса называется панспермией.

Гипотеза самопроизвольного зарождения жизни из неживой материи. Идеи о самозарождении жизни высказывались еще со времен античности. На протяжении тысячелетий они верили в возможность постоянного самопроизвольного зарождения жизни, считая его обычным способом появления живых существ из неживой материи. В XVII в. Ф. Реди экспериментально показал невозможность постоянного самозарождения живого. В нескольких стеклянных сосудах он поместил кусочки мяса. Часть из них он оставил открытыми, а часть прикрыл кисеей. Личинки мух появились только в открытых сосудах, в закрытых их не было. Принцип Реди: «живое – от живого». Окончательно версия о постоянном самозарождении живых организмов была опровергнута в середине XIX в. Л. Пастером. Опыты убедительно показывали, что в современную эпоху живые организмы любого размера происходят от других живых организмов.

Гипотеза биохимической эволюции. По представлениям, высказанным в 20-х гг. ХХ в. А.И.Опариным, а затем Дж. Холдейном, жизнь, а точнее, живое, возникло из неживой материи на Земле в результате биохимической эволюции.

Условия возникновения жизни при биохимической эволюции. В настоящее время учеными предложены более или менее вероятные объяснения, каким образом в первичных условиях Земли из неживой материи постепенно, шаг за шагом, развились разнообразные формы жизни. Возникновению жизни путем химической эволюции способствовали следующие условия: первоначальное отсутствие жизни; наличие в атмосфере соединений, обладающих восстановительными свойствами (при почти полном отсутствии кислорода О2); наличие воды и биогенных веществ; наличие источника энергии (относительно высокая температура, мощные электрические разряды, высокий уровень УФ-излучения).

Механизм возникновения жизни. Возраст Земли составляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад.

В 1924 г. русский академик А.И. Опарин выдвинул гипотезу о механизме зарождения жизни. В 1953 г. американские ученые С. Миллер и Г.Юриэкспериментально подтвердили гипотезу образование органических веществ (мономеров) из газов, присутствующих в первичной атмосфере Земли. В настоящее время имеется уже достаточно много неоспори­мых доказательств того, что первичная атмосфера Земли была бескислородной и, вероятно, состояла главным образом из водяных паров H2O, водорода H2 и углекислого газа CO2 с небольшой примесью других газов (NH3, CH4, CO, H2S). Возникшая на Земле жизнь постепенно изменила эти условия и преобразовала химию верхних оболочек планеты.

Согласно биохимической теории А.И. Опарина в отсутствие кислорода и живых организмов, абиогено синтезировались простейшие органические соединения – мономеров, предшественники биологических макромолекул живого вещества и ряда других органических соединений.

Возможными источниками энергии для образования органических веществ без участия живых организмов, видимо, являлись электрические разряды, ультрафиолетовое излучение, радиоактивные частицы, космические лучи, ударные волны от метеоритов, попадавших в земную атмосферу, теплота от интенсивной вулканической деятельности. В отсутствие кислорода, который мог бы их разрушить, а также живых организмов, которые использовали бы их в качестве пищи, абиогенно образовавшиеся органические вещества накапливались в Мировом океане – «первичном бульоне».

Следующим шагом было образование более крупных полимеров из малых органических мономеров, опять же без участия живых организмов. Американский ученый С. Фокс в результате нагревания смеси сухих аминокислот получил полипептиды различной длины. Они были названы протеиноидами, т.е. белковообразными веществами. Видимо, на первобытной Земле образование таких протеиноидов и полинуклеотидов со случайной последовательно­стью аминокислот или нуклеотидов могло происходить при испарении воды в водоемах, остававшихся после отлива. Если полимер образовался, он способен влиять на образование других полимеров. Некоторые протеиноиды способны, подобно ферментам, катализировать определенные химические реакции: именно эта способность, наверное, была главной чертой, определившей их последующую эволюцию. Эксперименты показывают, что один полинуклеотид, возникший из смеси нуклеотидов может служить матрицей для синтеза другого.

Полипептиды благодаря их амфотерности формировали коллоидные гидрофильные комплексы (т.е. молекулы воды, образуя вокруг белковых молекул оболочку, обособляли их от всей массы воды). При этом отдельные комплексы ассоциировались друг с другом, что приводило к образованию обособленных от первичной среды капель коацерватов, способных поглощать и избирательно накапливать различные соединения. Естественный отбор способствовал выживанию наиболее устойчивых коацерватных систем, способных к дальнейшему усложнению. Дальнейшая самоорганизация сложных молекул, происходившая за счет концентрирования на границе между коацерватами и внешней средой молекул липидов, привела к образованию перегородок мембранного типа. Во внутренних полостях коацерватов, куда уже только выборочно проникать молекулы, началась эволюцию от химических реакций к биохимическим. Одной из важнейших ступеней этой теории явилось объединение способности полинуклеотидов с каталитической активностью белков-ферментов.

Точка зрения Опарина и его сторонников по существу сформировала гипотезу голобиоза: структурную основу доклеточного предка (биоида) составляют жизнеподобные открытые (коацерватные) микросистемы, типа клеточной, способные к элементарному обмену веществ при участии фермент­ного механизма. Первичной белковая субстанция.

Гипотеза генобиоза: первичной была макромолекулярная система, подобная гену, способная к саморепродукции. Первичной признана молекула РНК.


Генетика – наука, изучающая наследственность и изменчивость живых организмов. Наследственность заключается в способности организмов передавать особенности строения, функции, развития своему потомству, обеспечивает преемственность между поколениями и обусловливает существование видов. В основе наследственности лежат структурные и функциональные возможности генетической информации клеток.

Полинуклеотидная последовательность ДНК практически у всех организмов (исключение составляют РНК-содержащие вирусы) являются первичным носителем генетической информации. Прокариоты и многие вирусы содержат одну молекулу ДНК, все участки которой кодируют макромолекулы. В эукариотических клетках генетический материал распределен в нескольких хромосомах. Хромосома содержит одну молекулу ДНК, полинуклеотидная последовательность которой состоит из участков, кодирующих и некодирующих макромолекулы. Некодирующие области ДНК играют структурную роль, позволяя участкам генетического материала упаковываться определенным образом. Другая часть некодирующей ДНК является регуляторной и участвует во включении генов, направляющих синтез белка.

Единицей наследственной информации, далее не делимыми в функциональном отношении, является ген, ответственный за формирование какого-либо элементарного признака. Ген представлен участком ДНК (реже РНК), кодирующий синтез одной макромолекулы: полипептида, рРНК, либо тРНК. Гены находятся в определенных участках хромосом – локусах. Гены в одинаковых локусах гомологичных хромосом и отвечающие за развитие вариантов какого-либо признака, называют аллельными. Их принято обозначать буквами латинского алфавита. Аллельные гены могут быть доминантными илипреобладающими (А, В) или рецессивными или подавляемыми (a, b).

Доминантным называют аллель, обеспечивающий развитие признака как в гомо-, так и в гетерозиготном состоянии. Рецессивным – аллель, проявляющийся только в гомозиготном состоянии. Разные аллельные формы генов возникают в результате мутации – изменения структуры полинуклеотидной последовательности ДНК соответствующих локусов гомологичных хромосом. Ген может мутировать неоднократно, образуя много аллелей. Если в генофонде популяции существует серия мутаций какого-либо гена, определяющая многообразие вариантов признака, то имеет место явление множественного аллелизма. Однако при образовании следующего поколения аллели комбинируются попарно у каждого индивидуума.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 420; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.