Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ошибка Фарадея




Уважаемый господин Канарёв Ф. М.!

Вводная часть

ОШИБКИ ФАРАДЕЯ, МАКСВЕЛЛА И ГЕРЦА

ДВЕНАДЦАТАЯ ЛЕКЦИЯ АКСИОМЫ ЕДИНСТВА

 

Тщательный анализ ошибок Фарадея, Максвелла и Герца показывает, что их заблуждения действовали дольше заблуждений других физиков и поэтому нанесли физике больший ущерб.

В 1831 году английский физик Майкл Фарадей открыл закон электромагнитной индукции – экспериментальный фундамент существующей электродинамики. Печально, конечно, что лишь сейчас мы увидели его фундаментальную ошибку при интерпретации своих экспериментов и вот как на неё отреагировал один из наших читателей.

 

Будучи инженером-технологом по автоматизации (Ленинградский Технологический Институт) и проработав более 45 лет на производстве, в очередной раз с горечью убедился: до чего нас "доучили" и продолжают совершать подобное преступление уже над нашими внуками. Даже из отдельных фрагментов Вашей брошюры многое стало проясняться. Если у Вас есть возможность, убедительная просьба выслать брошюру в электронном варианте, т.к. проживаю за пределами РФ. И хотя давно уже на пенсии, но не хотелось бы умирать дипломированным дураком, тем более, в своей специальности. Заранее благодарен и огромное Вам спасибо за те Знания, которые Вы сумели дать будущим поколениям. С уважением А. М.

Конечно, без информации о структуре электрона трудно интерпретировать экспериментальные результаты по электродинамике. Идея о тороидальной модели электрона родилась давно. Сейчас теория тороидальной модели электрона разработана достаточно глубоко и позволяет рассчитывать все его основные параметры. Теоретическая модель электрона представлена на рис. 36, а [1]. На ней показана лишь часть магнитных силовых линий. Если показать всю совокупность магнитных силовых линии, то магнитная поверхность электрона будет подобна поверхности яблока. Оказалось, что процессом формирования электромагнитной модели электрона и его поведением при взаимодействиях управляют более 20 констант [1].

На рис. 36, b представлено «фото» электрона, якобы полученное шведскими учёными. Как видно, теоретическая модель электрона (рис. 36, а) близка по структуре к его «фотографической» модели (рис. 36, b). Вполне естественно, что возникает вопрос о достоверности фотографии электрона, полученной шведскими учёными. Пока у нас нет оснований считать её достоверной. Обусловлено это тем, что размер электрона , а размеры световых фотонов, с помощью которых авторы эксперимента получили «фото» электрона, . Разница пять порядков. Это значит, что они пытались сфотографировать объект размером 1мм с помощью носителей информации, размеры которых 100 метров. Из этого следует, что нужно провести тщательный анализ метода фотографирования, чтобы установить причины, которые дали образ электрона близкий к его теоретической модели.

Тем не менее, «фото» электрона усиливает наши основания считать теоретическую модель электрона близкой к реальности, что позволяет приступить к анализу процессов, в которых участвуют электроны.

Экспериментальной основой существующей электродинамики является закон электромагнитной индукции, открытый Майклом Фарадеем в 1831 году. Суть этого закона кратко можно выразить так: переменное электрическое поле создаёт магнитное поле, а переменное магнитное поле создаёт электрическое поле. При этом направления этих полей взаимно перпендикулярны. На основании этого считается, что работа электромоторов, электрогенераторов, трансформаторов и других многочисленных электротехнических устройств – результат взаимодействия электрических и магнитных полей. Проверим связь с реальностью таких представлений. Для этого проведём давно известный элементарный эксперимент.

На рис. 92 показана электрическая схема, направления проводов которой сориентированы на север (N). При отсутствии тока в проводнике направление стрелок компасов А и В совпадают с направлением провода. При включении тока вокруг провода возникает магнитное поле и стрелки компасов отклоняются [1].

 

 

Рис. 92. Схема эксперимента по проверке закона электромагнитной индукции

 

Стрелка компаса A, расположенного над проводом, отклоняется вправо, а стрелка компаса B, расположенного под проводом, – влево. Из этого эксперимента следует, что магнитное поле вокруг провода при такой его ориентации закручено против хода часовой стрелки и имеет магнитный момент .

Итак, компасы убедительно доказывают формирование магнитного поля вокруг проводника при протекании в нём тока. Этот неопровержимый факт доказывает наличие в пространстве вокруг провода чистого магнитного поля без примеси электрической составляющей. Строгая связь направленности этого поля со знаками электрических потенциалов внизу и вверху провода даёт нам основание предположить, что это поле формируют электроны, движущиеся по проводу от плюса к минусу (рис. 93).

Это значит, что электроны движутся в проводе упорядоченно. Эта упорядоченность и формирует магнитное поле вокруг провода и у нас появляются основания полагать, что электроны, формирующие это поле, двигаясь от плюса к минусу, тоже имеют магнитные полюса, которые ориентированы также, как и магнитные полюса магнитного поля вокруг провода. При этом направление магнитного поля вокруг провода показывает, что северные магнитные полюса сориентированных электронов в проводе направлены вверх (от плюса к минусу, рис. 93).

 

Рис. 93. Схема движения электронов в проводе, сориентированном с юга (S +) на север (N -), и формирования магнитного поля вокруг него

 

Мы не будем описывать процесс рождения электромагнитной модели электрона из этой информации, но отметим, что выявленные все параметры электрона базируются на 20 константах [1].

Итак, мы сформировали представление о том, что суммарное магнитное поле вокруг провода – результат сориентированного движения электронов в нём (рис. 93). Теперь нам надо найти электрическое поле. Закон Фарадея требует появление электрического поля вокруг провода в момент, когда меняется магнитное поле. Это значит, что при отключении тока магнитное поле вокруг проводника, исчезая, должно генерировать электрическое поле и у нас возникает проблема фиксации момента его появления. Считается, что электрическое поле формируется в направлении перпендикулярном магнитному полю. В данном случае оно должно быть направлено вдоль провода. Как же зафиксировать его рождение? Это - главный вопрос, который должен был быть сформулирован ещё Майклом Фарадеем, но он не сделал этого. И это, видимо, естественно, так как он заложил лишь начала формирования представлений об электромагнитных явлениях. Но ведь его последователи должны были поставить этот вопрос и найти ответ на него, но они тоже не сделали этого. Поэтому попытаемся найти ответ на этот вопрос. Для этого рассмотрим вначале процессы взаимодействия магнитных полюсов постоянных магнитов.

Принято считать, что магнитные силовые линии выходят из северного магнитного полюса N и входят в южный магнитный полюс S (рис. 94). Как видно (рис. 94, а), у разноименных магнитных полюсов, сближающих друг друга, магнитные силовые линии в зоне контакта полюсов (рис. 94, а, точки а) направлены навстречу друг другу , а у одноименных магнитных полюсов, отталкивающих друг друга (рис. 94, b, точки b), направления магнитных силовых линий в зоне контакта полюсов совпадают [1].

Из описанного процесса взаимодействия магнитных полюсов постоянных магнитов следует, что если у двух параллельных проводов ток будет течь в одном направлении (рис. 95, а), то силовые линии магнитных полей, формирующихся в плоскости, перпендикулярной проводам, в зоне их контакта будут направлены навстречу друг другу и провода будут сближаться (рис. 95, а), как разноименные полюса магнитов (рис. 94, а) [1].

 

 

Рис. 94. Схема взаимодействия магнитных силовых линий стержневых магнитов

 

Если же направление тока у параллельных проводов будет противоположно (рис. 95, b), то направления магнитных силовых линий образующихся при этом магнитных полей будут совпадать по направлению в зоне их контакта и такие провода будут удаляться друг от друга, как и одноименные полюса стержневых магнитов (рис. 94, b) [1].

 

 

Рис. 95. Схема взаимодействия магнитных полей параллельных проводников с током

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 987; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.