Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Іонізуючі випромінювання




Загальна характеристика отруйних речовин. У світі виробляється близько 1 млн. різних хімічних речовин, із яких приблизно 700 широко використовуються у промисловості, сільському господарстві та у побуті. Переважна більшість використовуваних людиною хімічних речовин завдає певної шкоди її здоров'ю, а інколи й життю.

Небезпека хімічних речовин визначається їх здатністю проникати крізь органи дихання, травлення, шкірні та слизові оболонки, а також навіть у порівняно малих дозах порушувати нормальну життєдіяльність, викликати різні хворобливі стани, а за певних умов - летальний наслідок. Ступінь та характер порушень нормальної життєдіяльності організму залежить від фізико-хімічних, токсичних властивостей хімічних речовин, тривалості та шляхів впливу на організм.

Для небезпечних хімічних речовин (НХР) встановлюється їх гранично допустима концентрація (ГДК) в повітрі, воді та інших середовищах.

Гранично допустима концентрація - це максимальна кількість НХР в одиниці об'єму (повітря, води чи інших рідин) або ваги (харчових продуктів), яка при щоденному впливі протягом необмежене тривалого часу не викликає в організмі патологічних відхилень, а також негативних наступних змін у потомстві. При встановленні ГДК використовують розрахункові методи, результати біологічних експериментів, а також матеріали динамічних спостережень за станом здоров'я осіб, які підлягали впливу НХР різної концентрації. Рівні ГДК однієї й тієї ж речовини щодо різних об'єктів навколишнього середовища неоднакові (наприклад, встановлені ГДК для свинцю та його неорганічних з'єднань: у воді водоймищ господарсько-питного використання - 0,1 мг/л, у повітрі виробничих приміщень - 0,01 мг/м3, в атмосферному повітрі середньодобова ГДК - 0,0007 мг/м3).

Серед небезпечних хімічних речовин особливо виділяють спеціальні отруйні речовини (ОР), які призначені для знищення людей, тварин, а також сільськогосподарських рослин.

Отруйні речовини - це токсичні хімічні з'єднання з певними фізичними та хімічними властивостями, які роблять можливим їх бойове використання з метою ураження живої сили, зараження місцевості та бойової техніки. Для досягнення максимального ефекту ОР переводять у бойові стани: пару, аерозоль, краплі. Залежно від бойового стану ОР уражають людину, проникаючи крізь органи дихання, шкірний покрив, тракт травлення, рани.

Крім того, людина може отримати ураження внаслідок споживання заражених продуктів харчування та води, а також при впливі на слизові оболонки очей та носоглотки.

Результатом тривалого використання ОР можуть бути важкі екологічні та генетичні наслідки, ліквідація яких потребує декількох десятиліть.

Отруйні речовини за призначенням поділяють на 4 групи залежно від характеру їх уражаючої дії: смертельні; ті, що виводять з ладу тимчасово; подразнюючі та навчальні.

Для ураження сільськогосподарських рослин використовується спеціальний клас ОР - фітотоксиканти, які використовуються також і в мирних цілях. До цього класу ОР належать:

- гербіциди - для ураження трав'яної рослинності, злакових та овочевих культур;

- арборициди - для ураження дерево-чагарниковоїрослинності;

- дефоліанти - призводять до опадання листя;

- десіканти - уражають рослинність шляхом її висушування.

Небезпечні та шкідливі хімічні речовини за ступенем небезпеки для людини поділяються на 4 класи. Як показник небезпеки прийнятий коефіцієнт можливого інгаляційного отруєння - КМІО.

КМІО дорівнює відношенню максимально допустимої концентрації парів речовин при 20°С СМ20 до середньолетальної концентрації його парів СL50: .

Середньосмертельна концентрація СL50 визначається на білих мишах при двогодинній експозиції (вмирає половина мишей). Даний коефіцієнт залежно від числового значення дозволяє розділити хімічні речовини за інгаляційною небезпекою на 4 класи:

- 1 клас (надзвичайно небезпечні); КМІО > 300;

- 2 клас (дуже небезпечні); КМІО = 3О...299;

- З клас (помірно небезпечні); КМІО = 3...29;

- 4 клас (мало небезпечні); КМІО < 3.

Серед НХР виділяється особлива група речовин, які є найнебезпечнішими для людей у випадку проникнення в навколишнє середовище. Речовини цієї групи названі сильнодіючими отруйними речовинами (СДОР).

Прийнято два критерію відбору НХР у групу СДОР. Першим критерієм є належність токсичних речовини до 1-2 класу небезпеки за КМІО. Другим критерієм відбору є ймовірність та масштаби можливого зараження повітря, води, місцевості при виробництві, транспортуванні та зберіганні НХР. Введення другого критерію зумовлене тим, що із досить великої кількості відомих та перспективних хімічних з'єднань, віднесених щодо величини КМІО до 1-2 класу небезпеки, реальну небезпеку масового ураження людей являє лише та їх частина, котра характеризується великим масштабом виробництва, споживання, зберігання та транспортування.

На підставі критеріїв відбору було проведено аналіз 700 токсичних хімічних з'єднань, що отримали найширше розповсюдження у промисловості та сільському господарстві країни. Результати проведеного аналізу дозволяють виділити із багатьох з'єднань 34 речовини, що класифікуються як СДОР. Ймовірність ураження ними населення промислових міст та сільського населення у випадку аварій чи руйнувань досить велика. Із них майже 25 % (8 речовин) є табельні ОР чи розглядаються як резервні. Узгоджений із провідними промисловими міністерствами перелік найрозповсюдженіших. Основні характеристики СДОР наведені у таблиці3.7.

Таблиця 3.7..

№№ Найменування СДОР Густина СДОР, т/м3 Температура °С Токсодоза СДОР мг хв/п
Газ Рідина Кипіння Плавлення Середня порогова Середня смерт.
1. Акром і н - 0,839 52,7 -88,7 0,2 -
2. Аміак 0.0008 0,681 -33,42 -80,0    
3. Ацетонітрил - 0,786 81,6 -45,7 21,6 -
4. Ацетаициангідран - 0,932   -19 1,9 -
5. Водень миш'яковий 0,0035 1,64 -62,47 -116,9 0,2 -
6. Водень фтористий - 0,989 19,52 -83,4   -
7. Водень хлористий 0,0016 1,191 -65,10 -114,2    
8. Водень бромистий 0.0036 1,490 -66,77 -86,9 2,4 -
9. Водень ціанистий - 0,687 25,7 -13,3 0,2 1,5
10. Діметиламін 0,0020 0,680 6,9 -92,2 1,2 -
11. Етиленімін - 0,838 55,0 -78 4,8  
12. ЕтиленсульфІд - 1,005 55,0 -109 0,1 -
13. Етилмеркаптан - 0,839 35,0 147,9   -
14. Метиламін 0,0014 0,699 -6,5 -92,5 1,2 -
15. Метил бромистий - 1,732 3,6 -93,7 1,2  
16. Метил хлористий 0,0023 0,983 -23,76 -96,7 10,8 -
17. Метилокрилат - 0,953 80,2 -75   -
18. Метилмеркаптан - 0,867 5,.95 -123 1.7 -
19. Нітрил акрилової кислоти - 0,806 77,3 -83,6 0,75  
20. Окиси азоту - 1,491 21,0 -11,2 1.5 7,8
21. Окис етилену - 0,882 10,7 -112,5 2,2 -
22. Сірчистий ангідрид 0,0029 1,462 -10,1 -75,5 1,8  
23. Сірководень 0,0015 0,964 -60,35 -85,5 16,1  
24. Сірковуглець - 1,263 46,2 -111,9    
25. Соляна кислота конценентрована - 1,198 -     -
26. Триметиламін - 0,671 2,9 -117,1   -
27. Формальдегід - 0,815 -19,0 -118 0,6 -
28. Фосген 0.0035 1,432 8,2 -118 0,6  
  Фтор 0,0017 1,512 -188,2 -219,7 0,2 -
30. Фтор трихлористий - 1,570 75,3 -90,3    
31. Фосфору хлорокис - 1,675 107,2 1,2 0,006 -
32. Хлор 0,0032 1,553 -34,1 -101 0.6  
33. Хлорпикрин - 1,658 112,3 -6,4 0,02  
34. Хлорціан 0,0021 1,220 12,6 -6,9 0,75 -

 

Великі запаси СДОР є на підприємствах хімічної та нафтохімічної промисловості, кольорової та чорної металургії, оборонної, медичної промисловості, об'єктах комунального господарства, промисловості мінеральних добрив. У великих кількостях як холодоагент на підприємствах харчової, м'ясо-молочної промисловості, холодильниках торговельних баз використовується аміак.

Крім того, СДОР є також на об'єктах нафтової та газової промисловості, машинобудування, складах та базах сільськогосподарських хімікатів. В особливо великих кількостях (10...12 тис. тонн на окремих підприємствах) СДОР використовуються та зберігаються на підприємствах Мінхімнафтопрому та виробництва мінеральних добрив, які використовують 50 % хлору та 70 % аміаку країни.

Запаси цих речовин знаходяться у сховищах (до 80 %), технологічній апаратурі, транспортних засобах (трубопроводи, залізничні цистерни), їх руйнування чи ушкодження внаслідок аварії зумовлює викид (розлив) СДОР з наступним утворенням зони хімічного зараження.

Найбільш потенційно небезпечним в Україні є Донецько-Придніпровський район, в Одесі - припортовий завод.

Другою групою небезпечних хімічних речовин є промислові отрути. До промислових отрут належать НХР, які використовуються на виробництві, що є джерелом небезпеки гострих та хронічних інтоксикацій при порушенні правил техніки безпеки та гігієни праці. Промислові отрути справляють миттєвий і поступовий вплив на організм.

Найтоксичнішими із промислових отрут є: ртуть, свинець, берилій, талій, оловоорганічні з'єднання, ароматичні з'єднання, нітро- та аміноз'єднання, галогенізовані вуглеводи, фосфорорганічні речовини, миш'як, анілін та його похідні, бензин, бензол та ін. Небезпека забруднення ртуттю води, повітря, ґрунту, продуктів харчування найвища порівняно з іншими токсикантами з причини великого розповсюдження ртуті та її з'єднань; металева ртуть широко використовується у медичних, побутових, технічних термометрах, люмінесцентних лампах. Органічні з'єднання ртуті входять до складу травників зерна (гранозан). Значна кількість ртуті виділяється в атмосферу під час згорання твердого палива. Вона виділяється також при спалюванні автомобільного палива, яке містить сірку. Токсична металева ртуть (особливо її пари), солі двовалентної ртуті. Але небезпечнішими є її органічні з'єднання, особливо метильні, етильні, фенольні. У природних водах, грунтах відбувається біохімічне метилування ртуті, тобто підсилення її токсичності.

Для промислових підприємств встановлена ГДК шкідливих речовин в повітрі робочої зони - ГОСТ 12.1 007-76 "Вредные вещества. Классификация и общие требования безопасности". Згідно з ГОСТ 12.1.007-76 ГДК ШР в повітрі робочої зони називають такі концентрації, які при щоденній роботі протягом 8 годин або при іншій тривалості, але не більше 41 години за тиждень протягом усього робочого стажу не можуть викликати захворювання чи відхилення у стані здоров'я, що виявляються сучасними методами досліджень в процесі роботи чи у віддалені періоди життя сучасного та майбутнього поколінь.

При вмісті у повітрі робочої зони одночасно декількох шкідливих речовин односпрямованої дії оцінку здійснюють за сумою відношень фактичних концентрацій речовини до їх ГДК, яка не може перевищувати одиниці:

,

де С1, С2,..., Сn - фактична концентрація шкідливих речовин; ГДК1, ГДК2,..., ГДКn - відповідно ГДК цих речовин. До речовин односпрямованої дії належать такі речовини, які близькі за хімічною будовою та характером впливу на організм людини. ГДК розповсюджується на всі робочі приміщення, кабінети, відкриті майданчики. ГДК деяких шкідливих речовин наведено у табл.3.8.

Таблиця 3.8.

№№ Назва речовини ГДК, мг/м3 Клас небезпеки Агрегатний стан
1. Азоту окиси     Пара (П)
2. Аміак     П
3. Ангідрид сірчистий     П
4. Ангідрид сірки     Аерозоль (А)
5. Ацетон     П
6. Бензин-розчинник     П
7. Бензин паливний     П
8. Гас     П
9. Кислота сірчана     А
10. Луги їдкі 0,5   А
11. Озон 0,1   П
12. Ртуть металева 0,1   П
13. Сулема 0,1   А
14. Свинець та його органічні з'єднання 0,1   А
15. Окис вуглецю     П
16. Хлор     А

 

Характеристики деяких шкідливих речовин (табл.3.9.).

Таблиця 3.9.

Таблиця 3.9. № Назва речовини ГДК,мг/м3 Клас небезпеки Дія на організм людини
1. Свинець 0,01   Подразнює усі органи та системи організму, має кумулятивну здатність.
2. Вуглеводи     Викликає хронічне отруєння із поганим самопочуттям та апетитом, втратою ваги, швидкою втомою, сонливістю. Деякі вуглеводи мають специфічну дію.
3. Ацетон     Послідовно уражає усі відділи центральної нервової системи, має кумулятивну здатність.
4. Ефір     Подразнює слизові оболонки очей та верхніх дихальних шляхів, викликає опіки.
5. Сірчана кислота     Викликає опіки з великою глибиною пошкодження, подразнює слизові оболонки.
6. Пил (двоокису кремнію більше 70%) -полірувальний - скловолокно         Подразнює слизові оболонки   - " – - " -
7. Окис вуглецю     Викликає головний біль, запаморочення, безсоння, порушення обміну речовин, втрату свідомості

 

Допустимий вміст у воді шкідливих речовин регламентується "Правилами охраны поверхностных вод от загрязнения сточными водами". Склад та властивості води при будь-якому типі джерела води, засобу обробки води та конструктивних особливостей водогінної мережі мусять забезпечувати безпеку її у епідемічному відношенні, нешкідливість хімічного вмісту, та задовільні органолептичні властивості. Питна вода повинна мати загальну жорсткість не більше 7 мг/л, міді - 1,0 мг/л, цинку - 5 мг/л, заліза - 0,3 мг/л, хлору у найближчій точці від насосної станції - від 0.3 до 0.5 мг/л.

Вплив шкідливих хімічних речовин на організм людини. Дія шкідливих речовин на організм людини може супроводжуватися інтоксикацією, що призводить до розвитку професійних захворювань (наприклад, при отруєнні промисловими отрутами), а також викликає деякі шкірні захворювання - екземи, дерматити (мінеральні олії, кам'яновугільні смоли, дьоготь тощо).

Усі хімічні речовини по різному проявляють свій токсичний вплив на організм, згідно з яким вони поділяються на подразнюючі, припікачі, шкірнонаривні, задушливі, снотворні, судомні та інші. Причому більшість з них незалежно від дози та шляху проникнення в організм має вибіркову токсичність, тобто здатність впливати на окремі клітини та структури тканини, не зачіпаючи при цьому інші, з якими вони знаходяться у безпосередньому контакті. Згідно з принципом вибіркової токсичності розрізняють:

- кров'яні отрути, що впливають головним чином на клітини крові (чадний газ, селітра та інші);

- нервові або нейротоксичні отрути, що уражають клітини центральної та периферійної нервової системи (алкоголь, наркотики тощо);

- ниркові те печінкові отрути, котрі порушують функції цих органів (з'єднання важких металів, деякі грибкові токсини тощо);

- серцеві отрути, при впливі котрих порушується робота серця (деякі рослинні отрути із групи алкалоїдів);

- кишково-шлункові отрути, котрі уражають шлунок та кишечник (концентровані розчини кислот та лугів).

Особливу актуальність проблема гострих отруєнь отримала в останні десятиріччя, коли у більшості цивілізованих країн світу склалася "токсична ситуація", пов'язана а накопиченням у навколишньому середовищі великої кількості хімічних речовин, які використовуються для бойових, виробничих, медичних та інших цілей. За даними Всесвітньої організації охорони здоров'я, в цілому по європейських країнах у зв'язку з гострими отруєннями у лікарні для лікування надходить близько 1 особи на кожну тисячу населення та більше 1% цих хворих гине. Для порівняння підкреслимо, що рівень госпіталізації в зв'язку з інфарктом міокарда дорівнює 0,8 людини на тисячу населення. Загальна кількість жертв гострих отруєнь значно перевищує число загиблих від дорожньо-транспортних пригод. Особливий неспокій викликає неухильне зростання кількості гострих отруєнь серед дітей.

Часто опосередкованою причиною інгаляційного походження можуть бути і токсичні речовини, які виробляються внаслідок неконтрольованих хімічних реакцій при промислових аваріях, особливо під час пожеж.

За даними американських спеціалістів, до 80% загиблих при пожежах є жертвами не вогню, а токсичних продуктів горіння.

Назва "іонізуючі випромінювання" (ІВ) об’єднує різні за своєю фізич­ною природою види випромінювань. Схожість між ними полягає у тому, що всі вони відзначаються високою енергією, реалізують свою біологічну дію через ефекти іонізації та наступний розвиток хімічних реакцій у біологічних структурах клітини, які можуть призвести до її загибелі.

ІВ не сприймається нашими органами по­чуттів: людина не бачить його, не чує та не відчував його вплив на тіло.

Іонізуюче випромінювання існувало на Землі задовго до появи люди­ни, а також було у Космосі ще до появи Землі. Проте його вплив на ор­ганізм був виявлений тільки наприкінці ХІХ сторіччя.

У 1896 році французький вчений Анрі Бекерель поклав кілька фо­тографічних платівок до ящика столу, прикрив їх шматками мінералу, який містив уран. Коли він проявив платівки, то виявив на них сліди якихось випромінювань. Цим явищем зацікавилася Марія Кюрі, полька за походжен­ням. У 1898 році вона та її чоловік П’єр Кюрі виявили, що випроміню­вання урану пов'язано з його перетворенням на інші елементи. Вони наз­вали один з елементів полонієм, другий - радієм (по латині - випускаю­чий промені). Так з’явилося поняття "радіоактивність".

Відкриття Бекереля та до слідження Кюрі були підготовлені працями Вільгельма Рентгена, який у 1879 році відкрив Х-промені, що були наз­вані у подальшому рентгенівськими.

Класифікація іонізуючих випромінювань (рис. 3.1.)

 

Іонізуючі випромінювання
Корпускулярні:
- випромінювання
- випромінювання
Потоки частинок

 

 

Електромагнітні:
- випромінювання
Рентгенівське
Ультрафіолетове

           
   
 
   
 
 
   

 

 


Рис. 3.1. Класифікація іонізуючих випромінювань

 

Бекерель першим встановив небезпечні властивості радіоактивного випромінювання. Він поклав пробірку з радієм у кишеню і дістав опік шкіри. Марія Кюрі померла від раку крові внаслідок впливу радіації.

Іонізуючим називають квантове (електромагнітне) та корпускулярне (що складається з елементарних частинок) випромінювання, під впливом якого у газоподібному, рідкомута твердому середовищах із нейтральних атомів і молекул утворюються іони (позитивні та негативні частинки).

Класифікація ІВ наведена на схемі. Усі випромінювання за своєю природою бувають квантові (електромаг­нітні) та корпускулярні. До квантових належить ультрафіолетове, рент­генівське та гама - випромінювання, до корпускулярного – альфа- та бета-випромінювання - це найбільш короткохвильова частина спектра сонячного світла, що генерується атомами чи молекулами внаслідок змі­ни стану електронів на зовнішніх оболонках.

Рентгенівське випромінювання виникав внаслідок зміни стану елек­тронів на внутрішніх оболонках атома, довжина хвилі – (1...1000) 10-12 м.

Гамма - випромінювання виникає при ядерних вибухах, розпадах ра­діоактивних ядер, елементарних часток, а також при проходженні швид­ких заряджених частинок крізь речовину. Завдяки великій енергії(до 5 МеВ у природних радіоактивних речовинах та до 70 МеВ при штучних ядерних реакціях), гама-випромінювання (ГВ) легко іонізує різні речовини і здат­не самостійно викликати ядерні реакції. Може проникати крізь великі товщі речовини. Використовується у медицині (променева терапія), для стерилізації приміщень, апаратури, ліків, продуктів харчування.

Альфа-випромінювання (АВ) - це потік позитивно заряджених час­тинок - атомів гелію, що виникають при розпаді радіоактивних ізотопів і рухаються зі швидкістю близько 20000 км/с.

Нині вже відомо близько 40 природних і понад 200 штучних альфа - активних ядер. Проникаюча здатність АВ мала. Найбільшу небезпеку ста­новить проникнення альфа-ізотопів (наприклад плутонію – 239) усере­дину організму. Енергія альфа - частинок 2...8 МеВ.

Бета-випромінювання (БВ) - це потік електронів або позитронів (бета – частинок), що випромінюються атомними ядрами при бета-розпа­ді радіоактивних ізотопів, їхня швидкість близька до швидкості світ­ла.

Потоки нейтронів і протонів виникають при ядерних реакціях, їхня дія залежить від енергії частинок. Звичайно потоки нейтронів розділя­ють на повільні (холодні), швидкі та надшвидкі.

Джерелами іонізуючих випромінювань є ядерні вибухи, енергетичні ядерні установки та інші ядерні реактори, прискорювачі заряджених час­тинок, рентгенівські апарати, радіоактивні ізотопи, уранова про­мисловість, радіоактивні відходи тощо.

В апаратурі зв’язку джерелами ІВ є прилади, що працюють з вели­кими напругами споживання, високовольтні випрямні діоди (кенотрони), міцні генераторні та модуляторні лампи, міцні НВЧ підсилювачі та ге­нератори - клістрони, магнетрони і т. ін.

Іонізуюче випромінювання виникає при розпаді радіоактивних ядер. Кількісною характеристикою джерела випромінювання е активність, що виражається числом радіоак­тивних перетворюваньза одиницю часу.

У Міжнародній системі одиниць (СІ) за одиницю активності прийнято одне ядерне перетворення за секунду (розп/с) - бекерель (Бк). Позасистем­ною одиницею є кюрі (Кu) - активність такої кількості радіонуклідів, в якій відбувається 37 мрд. розпадів ядер за 1 с. Кюрі дорівнює ак­тивності Іг радію, але для урану 238 - Зт, кобальту – 60...0,001г. 1Кю = 3,77×1010 Бк.

Міра дії ІВ у будь-якому середовищі залежить від величини поглинутої енергії випромінювання та оцінюється дозою іонізуючого випромінювання. Розрізняють експозиційну, поглинуту та еквівалентну дози іонізуючого випромінювання.

Експозиційна доза характеризує іонізуючі здатності випромінювання у повітрі. За одиницю дози в СІ прийнято кулон на І кг (Кл/кг) - це така доза випромінювання, за якої в І кг сухого повітря виникають іони, що несуть заряд 1 кулон електрики кожного знаку.

Для характеристики цієї дози часто використовують позасистемну одиницю - рентген (Р).

Рентген (позасистемна одиниця) - це така доза гама-випромінювання, під впливом якої в 1 см3 повітря виникає 2,58 млрд. пар іонів. 1 Р = 2,58. 10-4 Кл/кг.

Для отримання експозиційної дози в 1Р у 1г повітря на його іоні­зацію витрачається87,3 ерга енергії. Величина 87,3 ерг/г називається енергетичним еквівалентом рентгену.

Експозиційна доза характеризує потенціальні можливості іонізую­чого випромінювання.

Поглинута доза (Дп) характеризує енергію ІВ, що поглинута одиницею маси опроміненого середовища. Величина дози, яку дістала людина за­лежить від виду випромінювання, енергії його частинок, щільності потоку та тривалості впливу випромінювання. Одиниця випромінювання поглинутої дози - грей (Гр), в СІ - джоуль на кілограм (Дж/кг), позасис­темна одиниця - рад. 1 рад = 0,01 Дж/кг, 1 Гр = 1 Дж/кг = 100 рад.

Рад - це така поглинута доза, за якої 1г речовини поглинає енергію в 100 ергів незалежно від виду енергії випромінювання. Співвідношення доз випромінювання (у рентгенах) і доз поглинання (у радах): при дозі вип­ромінювання ІР поглинута доза у повітрі 0,87 рад, у воді та живій тканині - 0,93 рад, тобто можна вважати приблизно однаковими дози випромінювання (рентген) та поглинання (рад).

Але поглинута доза не враховує те, що вплив на організм однієї і тієї ж дози різних випромінювань неоднаковий. Наприклад, альфа - вип­ромінювання у 20 разів більш небезпечне, ніж інші випромінювання.

Еквівалентна доза (Де) ІВ визначає біологічний вплив різних видів іо­нізуючих випромінювань на організм людини і служить для оцінки радіаційної небезпеки цих видів випромінювань. Вона дозволяє приводити біоло­гічний ефект даного виду випромінювання до впливу, що спричиняють гама-промені. Де = К Дп, де К - коефіцієнт якості випроміню­вань, який вказує, у скільки разів біологічний ефект даного виду випромінювання відрізняється від дії такої самої дози гама -випромінювання. К = І для рентгенівського випромінювання, 10 - для нейтронів, 20 - для альфа частинок. Еквівалентна доза в СІ вимірюється у зивертах. Зиверт (Зв) дорів­нює поглинутій дозі в І Дж/кг (для рентгенівського, гама - та бета –випромінювань). Часто використовують позасистемну одиницю – бер (біологічний еквівалент рада). 1 бер = 0,01 Дж/кг; 1 бер = 0,01 Зв; 1 Зв = 100 бер.

При виключенні попадання радіоактивного пилу в організм можна вва­жати, що експозиційна, поглинута та еквівалентна дози практично однакові, 1 бер = 1 рад = 1Р.

Різні частини тіла неоднаково реагують на отриману дозу опромінен­ня. Наприклад, за однакової еквівалентної дози виникнення раку в леге­нях більш імовірне, ніж у щитовидній залізі, опромінення статевих залоз особливо небезпечне через можливі генетичні ушкодження.

Тому дози опромінення органів і тканин враховуються з різними кое­фіцієнтами.

За рівномірного опромінення всього тіла із 100% дози червоний кістковий мозок здатний поглинути 12%, молочні залози – 15%, легені – 12%, яєчники або сім'яники – 25%, щитовидна залоза – 3%, кісткова тканина – 3%, інші тканини –30%. Наведені цифри характеризують коефіцієнти радіаційного ризику цих органів.

Сумарний ефект опромінення організму характеризується ефективною еквівалентною дозою, яку дістають шляхом підсумовування доз, отриманих усімаорганами та тканинами, помноженими на коефіцієнти ризику (вимірюється у зивертах).

Вплив іонізуючого випромінювання на живий організм. Усі іонізуючі випромінювання дуже руйнівно діють на живі організми. Але дія ІВ невідчутна людиною. Жодний орган чуттів людини їх не фіксує. Людина може піддаватися опроміненню, поглинути, вдихнути радіо­активну речовину без будь-яких первинних відчуттів.

При вивченні дії на організм людини ІВ було виявлено такі особли­вості:

1.Висока руйнівна ефективність поглинутої енергії ІВ, навіть дуже мала кількість енергії випромінювання може спричинити глибокі біоло­гічні зміни в організмі;

2. Присутність прихованого періоду уявного благополуччя, він може бути досить довгим при опроміненнях у малих дозах;

3. Вплив від малих доз може підсумовуватися або накопичуватися, цей ефект називається кумуляція;

4. Випромінювання впливає не тільки на даний живий організм, а й на його нащадків, цей ефект називається генетичним;

5. Різні органи живого організму мають певну чутливість до опромі­нення, більш чутливі червоний кістковий мозок, щитовидна залоза, внутріш­ні, особливо кровотворні, органи, молочні залози, статеві органи;

6. Різні організми мають істотні відмінні особливості реакції на дози опромінення;

7. Ефект опромінення залежить від частоти впливу ІВ; одноразове опромінення у великій дозі спричиняє глибші наслідки, ніж фракціоноване.

Внаслідок впливу іонізуючого випромінювання на організм людини у тілі можуть відбуватися складні хімічні, фізичні та біологічні про­цеси.

Основний склад тканини людини (60-70%) - вода. Вода (Н2О) під впливом випромінювання розщеплюється на водень (Н) та гідроксильну групу (ОН), що утворюють продукти з високою хімічною активністю: оксид НО2 і перекис водню Н2О2. Ці сполуки вступають у реакцію з молекулами білка, фермен­тів та інших структурних елементів біологічної тканини, руйнуючи її. Внаслідок порушуються обмінні процеси, пригнічується активність ферментних систем, уповільнюється та зупиняється ріст тканин, виникають хімічні з’єднання, які не властиві організму-токси­ни, що призводить до порушення життєдіяльності окремих функцій чи сис­тем організму у цілому. Хімічні реакції розвиваються з великим виходом і втягують у цей процес багато сотень та тисяч молекул, на які не діяло опромінення. Це специфічна особливість дії ІВ. Ніякий інший вид енер­гії (теплової, електричної), поглинутої організмом у такій самій кіль­кості, не здатний викликати такі руйнування. Наприклад, смертельна до­за ІВ для ссавців - 5 Гр (500 рад) - відповідає поглинутій енергії випромінювання 5 Дж/кг(57104 ерг / г). Якщо цю енергію підвести у вигляді теплоти, вона б зігріла тіло не більш як на 0,001°С. Ця теплова енергія міститься у склянці гарячого чаю!

Вплив ІВ на тканини організму можна описати так. За час близько десяти трильйонних секунди проникаюче випромінювання внаслідок електрич­ної взаємодії відкриває електрон від відповідного атома, утворюються два іони. Гамма - випромінювання з експозиційною дозою 1Р здатне утво­рювати 2,08 млрд. іонів в 1см3 повітря, (у воді та живій тканині ефек­тивність гама - випромінювання – 93%). Електрони, що відірвалися, по­чинають іонізувати інші атоми. І вільні електрони, і іонізовані атоми протягом десяти мільярдних частинок секунди беруть участь у складній ланці фізико-хімічних перетворень, внаслідок яких утворюються нові мо­лекули, у тому числі й вільні радикали.

Протягом наступних мільйонних часток секунди розпочинаються хімічні зміни в організмі. Вільні радикали, що утворилися, вступають в реакцію з молекулами організму та змінюють їхню хімічну структуру, порушуючи нормальне функціонування клітин. Наступні біохімічні зміни можуть відбуватися як через кілька секунд, так і через десятиріччя після опромінен­ня та спричинити загибель клітин або зміни в них, що спричиняютьрам. Повторне опромінення може прискорити або супроводжувати цей процес.

Багаторічними дослідженнями, проведеними Міжнародним Науковим ко­мітетом по впливу атомної радіації (створений у рамках ООН), вста­новлені наступні граничні значення доз, які спричиняють різні зміни в орга­нізмі.

Дуже велика доза 100 Гр (10000 рад) викликає настільки серйозне ураження, що смерть, як правило, наступає протягом кількох годин або діб.

При дозах опромінення від 10 до 50 Гр (І000...5000 рад) опромінена людина помре через 1-2 тижні від крововиливу у шлунково-кишковий тракт, за менших доз смерть може наступити через один-два місяці через руйну­вання клітин червоного кісткового мозку - основного елемента кровотворної системи організму.

Від дози опромінення З...5 Гр (300...500 рад) вмирає майже половина усіх опромінених. Кровотворна система організму е найбільш уразливою, вона припиняє нормальне функціонування при дозах опромінення 0,5...1Гр (50...100 рад).

Кровотворні органи, проте, мають високу здатність відновлюватися, і, якщо доза не досить велика, кровоносна система може повністю відтво­рити свої функції.

Радіоактивні ізотопи широко застосовуються у діяльності людини. Ра­діоізотопну гамма - дефектоскопію застосовують для контролю якості про­дукції, яку-випускають, експлуатаційної надійності відповідальних де­талей, визначення структури сплавів, зварювальних з'єднань, а також у дослідницьких цілях для корегування і відпрацювання технології зварювання. У промисловій практиці застосовуються різноманітні товщиноміри, урівнеміри, густиноміри, вологоміри і інші апарати та прилади.

Електромагнітні поля та випромінювання

Першим, хто звернув увагу на вплив електромагнітні поля(ЕМП) на організм людини, був Пав­ло Іванович Іжевський - лікар, земляк і друг винахідника радіо Олексан­дра Степановича Попова. У 1900 р. П.І.Іжевський у Військово-медичній академії захистив дикторську ди­сертацію "Вплив електричних хвиль на організм людини." Це був результат спостережень за здоров'ям моряків, які працювали на кораблях з радіостанціями, та моряків, які були на тих кораблях. ЕМП - природні та антропогенні.

ЕМП природного походження.

Електричне поле Землі має напруженість 130 В/м (зменшується від середніх широт до полюсів та до екватора, а також з віддаленням від земної поверхні за експоненціальним законом). Варіації поля - річні, добові та випадкові (гроза, опади, завірюхи, пилові бурі, вітри).

Магнітне поле Землі має напруженість 47,3 А/м на північному, 39,8 А/м - на південному полюсах, 19,9 А/м - на магнітному екваторі.

Періоди коливання поля - 80 та 11 років (основні) та менші відпо­відно до сонячної активності.

Земля постійно знаходиться у ЕМП Сонця.У процесі ево­люції людина пристосувалась до впливу цих полів (здебільшого), але є кореляційний зв’язок між зміною сонячної активності та нервовими, психічними, серцево-судинними захворюваннями, та умовно-рефлекторною діяльністю (біоритмами).

Антропогенні випромінювання охоплюють практично всі діапазони.

ВЧ та УВЧ діапазон (30кГц...500мГц).

Довгі хвилі (1...10 км) обгинають Земну поверхню та перешкоди, йдуть шаром між Земною поверхнею та нижньою межею іонізаційного шару атмосфери майже не поглинаються ґрунтом, поширюються на далекі відстані.

Середні хвилі (100...1000 м) також досить добре обгинають Земну поверхню, але від­хиляються перешкодами, більшими за довжину хвилі, та значно поглинаю­ться ґрунтом; дальність поширення близько 500 км, тому існує мережа ретрансляційних станцій.

Короткі хвилі (10...100 м) сильно поглинаються ґрунтом, але поширюються на да­лекі відстані при відбиттях від Земної поверхні та іоносфери.

Ультракороткі хвилі (1...10 м) дуже сильно поглинаються ґрунтом, майже не від­биваються іоносферою, поширюються в межах прямої видимості.

Як результат дії ЕМП виникають: загальна слабкість, підвищена вто­ма, пітливість, сонливість, розлад сну, головний біль, болі в області серця. З’являються роздратування, втрата уваги, подовжується тривалість мовно-рухомої та зоровомоторної реакції, збільшується межа нюхової чут­ливості. Захворюваність в основному зумовлена порушенням роботи нерво­вої та серцево-судинної систем, які керують всіма функціями організму.

Вага радіохвильової хвороби прямо залежить від напруженості ЕМП, тривалості впливу, фізичних особливостей різних діапазонів частот, а також від функціонального стану організму та його стійкості. Поряд з радіохвильовою хворобою спостерігається загальне збільшення захворювань.

Зміни діяльності нервової та серцево-судинної систем зворотні, але вони мають кумулятивний характер (тобто накопичуються і посилюються з часом) і при тривалому та інтенсивному впливі ЕМП призводять до стійких порушень і захворювань.

Активність впливу ЕМП різних діапазонів значно зростає з ростом час­тоти і дуже серйозно впливає у НВЧ діапазоні.

НВЧ діапазон – це дециметрові (10...100 см), сантиметрові (1...10 см) та міліметрові (1...10 мм) хвилі, об'єднуються терміном "мікрохвилі".

НВЧ випромінювання дуже сильно поглинається ґрунтом і не відбиває­ться іоносферою.

У НВЧ діапазоні працюють радіомовні та телевізійні станції, радіозв'язок (ра­діорелейний та супутниковий) та радіолокатори.

НВЧ випромінювання при поглинанні поганопроводними матеріалами викликає їх нагрівання. Використовується у промисловості, побуті, медицині, а також для передачі енергії променем на великі відстані.

У межах променя напрямленої антени інтенсивність ЕМП значно збіль­шується, а за межами променя стає дуже малою, що зумовлює виділення еко­логічно небезпечних зон.

При інтенсивності 20мкВт/см2 спостерігається зменшення частоти пуль­су, зниження артеріального тиску; з ростом інтенсивності проявляються електрокардіографічні зміни, тенденція до гіпотонії, до змін з боку нер­вової системи. За інтенсивності 6 мВт/см2 - зміни у статевих залозах, у складі крові, каламутність кришталика, потім - зміни у корі головного моз­ку, підвищення кров'яного тиску, розриви капілярів і крововиливи у легені та печінку. За інтенсивності до 100 мВт/см2 - стійка гіпотонія, двосто­роння катаракта; подальше опромінення викликає больові відчуття; при ін­тенсивності більш І Вт/см2 - швидка втрата зору.

НВЧ випромінювання використовується також для опромінення насіння перед посадкою, для боротьби з комахами та бактеріями (вірусами).

Оптичний діапазон не класифікується як радіочастотний, але широко використовується у радіоелектроніці. З боку довгих хвиль між оптичним діапазоном та НВЧ лежить та поки маловикористовуваний діапазон субміліметрових хвиль (0...0,1 мм), а з боку коротких хвиль – перехід до рентгенівського випромінювання. Оптичне випромінювання включає діапазон видимого світла (0,4...0,77 мкм), а також межує з ним діапазони – інфрачервоного (ІЧ, 0,1...0,77 мкм) та ультрафіолетового (УФ, 0,05...0,4 мкм). Ультрафіолетове випромінювання приз­водить до опіків шкіри, інфрачервоне - до теплового удару. ІЧ випромінювання зустрічається дуже часто, тому що при ККД<1 частина витраченої енергії перетворюється на теплоту.

Оптичний діапазон - робочий діапазон лазерного випромінювання. Лазери - квантові оптичні генератори, їх випромінювання має ряд особливостей, головні - часова та просторова когерентність.

Часова когерентність зумовлює монохроматичність (одночастотність) випромінювання, просторова когерентність - високу направленість, тобто малу кутову розбіжність променя на великих відстанях. За допомогою ла­зерів здійснюється багатоканальний зв’язок на великі відстані (кількість каналів у десятки тисяч разів перебільшує можливість НВЧ діапазону), ла­зерна локація, дальнометрія, швидка обробка інформації,

Вплив лазерного випромінювання на біологічні тканини може привести до теплової, ударної дії світлового тиску, електрострикції (механічним коливанням під дією ЕМП), перебудовам внутрішньоклітинних структур.

За великою інтенсивністю та малою тривалістю імпульсів спостерігається ударна дія, за меншою інтенсивністю проявляється тепловий ефект.

Найбільш сильний вплив лазерне випромінювання чинить на очі; у пер­шу чергу випромінювання УФ діапазону – викликає коагуляцію білка, опіки рогівки та слизової обо­лонки; промені видимого діапазон впливають на клітини сітківки. Випромінювання ІЧ діапазону менш небезпечне, але також може спричинити слі­поту.

В наслідок лазерного опромінювання можуть виникати вільні радикали - вплив аналогічний впливу іонізаційних випромінювань.

ГОСТ 12.1.006.84 "Електромагнітні поля для радіочастот" встановлює, що оцінка ЕМП проводиться окремо з електричних і магнітних складових поля. Граничне допустимі рівні протягом робочого дня по електричній ск­ладовій не повинні перевищувати 50 В/м, знижуючись ступенями до 5 В/м у міру підвищення частоти. По магнітній складовій встановлені рівні тільки для окремих ділянок діапазону: 5 А/м для частот 60 кГц...1,5 МГц та 0,3 А/м для частот ЗО кГц...50 МГц. Допускається перевищення цих рівней (але не більше за двократне) при зменшенні робочого часу не менш як на 50%.

У промисловості і охороні здоров’я широко застосовуються прилади, прис­трої, обладнання, робота яких пов’язана з використанням різноманітних частотних діапазонів (від гукових хвиль до електромагнітних оптичного діапазону). При широкому застосуванні систем, що викликають виникнення електромагнітних полів, особливе значення мають питання безпечних умов праці і всебічних заходів по захисту від шкідливих впливів на організм людини.

 

3.3. Соціально-політичні та комбіновані небезпеки.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1010; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.113 сек.