КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы ускорения умножения
Методы ускорения умножения делятся на аппаратурные и логические. Как те, так и другие требуют дополнительных затрат оборудования. При использовании аппаратурных методов дополнительные затраты оборудования прямо пропорциональны числу разрядов в операндах. Эти методы вызывают усложнение схемы АЛУ. Дополнительные затраты оборудования при реализации логических методов ускорения умножения не зависят от разрядности операндов. Усложняется в основном схема АЛУ. В ЭВМ для ускорения умножения часто используется комбинации этих методов. К аппаратурным методам ускорения умножения относятся ускорение выполнения операций сложения и сдвига, введение дополнительных цепей сдвига, позволяющих за один такт производить сдвиг информации в регистрах сразу на несколько разрядов, совмещение по времени операций сложения и сдвига, построение комбинационных схем множительных устройств, реализующих «табличное» умножение. Среди логических методов наиболее распространены в настоящее время методы, позволяющие за один шаг умножения обработать несколько разрядов множителя. Рассмотрим один из способов умножения на два разряда множителя, начиная с его младших разрядов. В зависимости от результата анализа пары разрядов множителя предусматриваются следующие действия. При 00 производится простой сдвиг на два разряда вправо суммы частичных произведений. При 01 к сумме частичных произведений прибавляется одинарное множимое и сумма частичных произведений сдвигается на два разряда вправо. Тогда в первых трех случаях результат получается правильный, а в последнем неправильный, он должен быть скорректирован на следующем шаге. Поскольку при 11 из суммы частичных произведений вычитается одинарное множимое вместо прибавления утроенного множимого, для корректировки результата к сумме частичных произведений перед выполнением сдвига надо было бы прибавить учетверенное множимое. Но после сдвига на два разряда вправо сумма частичных произведений уменьшается в 4 раза, так что для корректировки его на следующем шаге должно быть прибавлено одинарное множимое. Это учитывается при обработке следующей пары разрядов. Если следующая пара 00, то она обрабатывается как 01, если 01, то как 10, если 10, то как 11, если 11, то как 00, и фиксируется необходимостью коррекции при обработке следующей пары. Удвоенное множимое может быть получено его сдвигом. Признак необходимости коррекции может запоминаться в отдельном триггере коррекции. Правила обработки пар разрядов множителя с учетом признака коррекции сведены в таблице 4.3.4 Таблица 4.3.4- Правила обработки пар разрядов множителя с учетом признака коррекции
После обработки каждой комбинации содержимое регистра множителя и сумматора частичных произведений сдвигается на два разряда вправо. Данный метод умножения требует корректировки результата, если старшая пара разрядов множителя 11 или 10 и состояние триггера коррекции является единичным. В этом случае к полученному произведению должно быть добавлено множимое. Аналогичным образом можно организовать умножение с обработкой за шаг большего числа разрядов множителя.
Дата добавления: 2014-11-29; Просмотров: 737; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |