Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Математическое ожидание




Величин.

Основные числовые характеристики случайных

Закон распределения плотностью характеризует случайную величину. Но часто он неизвестен, и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно. Такие числа называют числовыми характеристиками случайной величины. Рассмотрим основные из них.

 

 

Определение: Математическим ожиданием М(Х) дискретной случайной величины называют сумму произведений всех возможных значений этой величины на их вероятности:

Если дискретная случайная величина Х принимает счётное множество возможных значений, то

Причем математическое ожидание существует, если данный ряд абсолютно сходится.

Из определения следует, что M(X) дискретной случайной величины есть неслучайная (постоянная) величина.

Пример: Пусть Х – число появлений события А в одном испытании, P(A) = p. Требуется найти математическое ожидание Х.

Решение: Составим табличный закон распределения Х:

X 0 1
P 1 - p p

 

Найдем математическое ожидание:

Таким образом, математическое ожидание числа появлений события в одном испытании равно вероятности этого события.

Происхождение термина математическое ожидание связано с начальным периодом возникновения теории вероятностей (XVI-XVIIвв.), когда область ее применения ограничивалась азартными играми. Игрока интересовало среднее значение ожидаемого выигрыша, т.е. математическое ожидание выигрыша.

Рассмотрим вероятностный смысл математического ожидания.

Пусть произведено n испытаний, в которых случайная величина Х приняла m1 раз значение x1, m2 раз значение x2, и так далее, и, наконец, она приняла mk раз значение xk, причём m1 + m2 +…+ + mk = n.

Тогда сумма всех значений, принятых случайной величиной Х, равна x1 m1+x2 m2+…+xk mk.

Среднее арифметическое всех значений, принятых случайной величиной Х,равно:

,

так как – относительная частота значения для любого значения i = 1, …, k.

Как известно, если число испытаний n достаточно велико, то относительная частота приближённо равна вероятности появления события , следовательно,

Таким образом, .

Вывод: Математическое ожидание дискретной случайной величины приближённо равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Рассмотрим основные свойства математического ожидания.

Свойство 1: Математическое ожидание постоянной величины равно самой постоянной величине:

М(С) = С.

Доказательство: Постоянную С можно рассматривать как дискретную случайную величину, которая имеет одно возможное значение С и принимает его с вероятностью р = 1. Следовательно, М(С) =С 1= С.

Определим произведение постоянной величины С на дискретную случайную величину Х как дискретную случайную величину СХ, возможные значения которой равны произведениям постоянной С на возможные значения Х. Вероятности возможных значений СХ равны вероятностям соответствующих возможных значений Х:

СХ C C C
Х
Р

 

Свойство 2: Постоянный множитель можно выносить за знак математического ожидания:

M(CX) = CM(X).

Доказательство: Пусть случайная величина X задана законом распределения вероятностей:

X
P

 

Напишем закон распределения вероятностей случайной величины CX:

СX C C C
P

 

М(CX) = C + C = C + ) = C M(X).

Определение: Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы.

Определение: Несколько случайных величин называются взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Определим произведение независимых дискретных случайных величин X и Y как дискретную случайную величину XY, возможные значения которой равны произведениям каждого возможного значения X на каждое возможное значение Y. Вероятности возможных значений XY равны произведениям вероятностей возможных значений сомножителей.

Пусть даны распределения случайных величин X и Y:

X
P

 

Y
G

 

Тогда распределение случайной величины XY имеет вид:

XY
P

 

Некоторые произведения могут оказаться равными. В этом случае вероятность возможного значения произведения равна сумме соответствующих вероятностей. Например, если = , тогда вероятность значения равна

Свойство 3: Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X) M(Y).

Доказательство: Пусть независимые случайные величины X и Y заданы своими законами распределения вероятностей:

 

X
P
Y
G

 

Для упрощения выкладок ограничимся малым числом возможных значений. В общем случае доказательство аналогичное.

Составим закон распределения случайной величины XY:

XY
P

 

Найдем математическое ожидание этой величины.

M(XY) =

M(X) M(Y).

Следствие: Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Доказательство: Докажем для трех взаимно независимых случайных величин X, Y, Z. Случайные величины XY и Z независимы, тогда получаем:

M(XYZ) = M(XY Z) = M(XY) M(Z) = M(X) M(Y) M(Z).

Для произвольного числа взаимно независимых случайных величин доказательство проводится методом математической индукции.

Пример: Независимые случайные величины X и Y заданы следующими законами распределения:

X 5 2
P 0,6 0,1 0,3
Y 7 9
G 0,8 0,2

 

Требуется найти M(XY).

Решение: Так как случайные величины X и Y независимы, то M(XY)=M(X) M(Y)=(5 0,6+2 0,1+4 0,3) (7 0,8+9 0,2)= 4,4 7,4 = =32,56.

Определим сумму дискретных случайных величин X и Y как дискретную случайную величину X+Y, возможные значения которой равны суммам каждого возможного значения X с каждым возможным значением Y. Вероятности возможных значений X+Y для независимых случайных величин X и Y равны произведениям вероятностей слагаемых, а для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго.

Если = и вероятности этих значений соответственно равны , то вероятность (то же, что и ) равна .

Свойство 4: Математическое ожидание суммы двух случайных величин (зависимых или независимых) равно сумме математических ожиданий слагаемых:

M(X+Y) = M(X) + M(Y).

Доказательство: Пусть две случайные величины X и Y заданы следующими законами распределения:

X
P
Y
G

 

Для упрощения вывода ограничимся двумя возможными значениями каждой из величин. В общем случае доказательство аналогичное.

Составим все возможные значения случайной величины X+Y (предположим, для простоты, что эти значения различны; если – нет, то доказательство проводится аналогично):

X+Y
P

 

Найдем математическое ожидание этой величины.

M (X+Y) = + + + +

Докажем, что + = .

Событие X = ( его вероятность P(X = ) влечет за собой событие, состоящее в том, что случайная величина X + Y примет значение или (вероятность этого события, по теореме сложения, равна ) и обратно. Тогда = .

Аналогично доказываются равенства = = =

Подставляя правые части этих равенств в полученную формулу для математического ожидания, получим:

M(X + Y) = + ) = M(X) + M(Y).

Следствие: Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Доказательство: Докажем для трех случайных величин X, Y, Z. Найдем математическое ожидание случайных величин X +Y и Z:

M(X+Y+Z)=M((X+Y Z)=M(X+Y) M(Z)=M(X)+M(Y)+M(Z)

Для произвольного числа случайных величин доказательство проводится методом математической индукции.

Пример: Найти среднее значение суммы числа очков, которые могут выпасть при бросании двух игральных костей.

Решение: Пусть X – число очков, которое может выпасть на первой кости, Y – на второй. Очевидно, что случайные величины X и Y имеют одинаковые распределения. Запишем данные распределений X и Y в одну таблицу:

X 1 2 3 4 5 6
Y 1 2 3 4 5 6
P 1/6 1/6 1/6 1/6 1/6 1/6

 

M(X) = M(Y) (1+2+3+4+5+6) = =

M(X + Y) = 7.

Итак, среднее значение суммы числа очков, которые могут выпасть при бросании двух игральных костей равно 7.

Теорема: Математическое ожидание M(X) числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: M(X) = np.

Доказательство: Пусть X – число наступлений события A в n независимых испытаниях. Очевидно, общее число X появлений события A в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Тогда, если число появлений события в первом испытании, во втором, и так далее, наконец, – число появлений события в n -ом исытании, то общее число появлений события вычисляется по формуле:

X = .

По свойству 4 математического ожидания имеем:

M(X) = M( ) + … + M( ).

Так как математическое ожидание числа появлений события в одном испытании равно вероятности события, то

M( ) = M( )= … = M( ) = p.

Следовательно, M(X) = np.

Пример: Вероятность попадания в цель при стрельбе из орудия равна p = 0,6. Найти среднее число попаданий, если будет произведено 10 выстрелов.

Решение: Попадание при каждом выстреле не зависит от исходов других выстрелов, поэтому рассматриваемые события независимы и, следовательно, искомое математическое ожидание равно:

M(X) = np = 10 0,6 = 6.

Итак, среднее число попаданий равно 6.

Теперь рассмотрим математическое ожидание непрерывной случайной величины.

Определение: Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a, b], называют определенный интеграл:

где f(x) – плотность распределения вероятностей.

Если возможные значения непрерывной случайной величины X принадлежат всей оси Ox, то

Предполагается, что данный несобственный интеграл сходится абсолютно, т.е. сходится интеграл Если бы это требование не выполнялось, то значение интеграла зависело бы от скорости стремления (в отдельности) нижнего предела к -∞, а верхнего предела – к +∞.

Можно доказать, что все свойства математического ожидания дискретной случайной величины сохраняются и для непрерывной случайной величины. Доказательство основано на свойствах определенных и несобственных интегралов.

Очевидно, чтоматематическое ожидание M(X) больше наименьшего и меньше наибольшего из возможных значений случайной величины X. Т.е. на числовой оси возможные значения случайной величины расположены слева и справа от ее математического ожидания. В этом смысле, математическое ожидание M(X) характеризует расположение распределения, и поэтому его часто называют центром распределения.

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 5120; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.055 сек.