КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Применение метода гемагглютинации в вирусологии
-Агглютинация представляет собой склеивание клеток или отдельных частичек — носителей антигена с помощью иммунной сыворотки к этому антигену. -Реакция пассивной, или непрямой, гемагглютинации (РПГА, РНГА). В ней используют эритроциты или нейтральные синтетические материалы (например, частицы латекса), на поверхности которых сорбированы антигены (бактериальные, вирусные, тканевые) или антитела. Их агглютинация происходит при добавлении соответствующих сывороток или антигенов. Эритроциты, сенсибилизированные антигенами, называют антигенным эритроцитарным диагностикумом и используют для выявления и титрования антител. Эритроциты, сенсибилизированные антителами. называют иммуноглобулиновыми эритроцитарными диагностикумами и применяют для выявления антигенов. Реакцию пассивной гемагглютинации используют для диагностики заболеваний, вызванных вирусами (грипп, аденовирусные инфекции, вирусный гепатит В, корь, клещевой энцефалит, крымская геморрагическая лихорадка и др.). -Реакция торможения гемагглютинации (РТГА) основана на феномене предотвращения (торможении) иммунной сыворотки гемагглютинации эритроцитов вирусами, используется для выявления и титрования противовирусных антител. Она служит основным методом серодиагностики гриппа, кори, краснухи, эпидемического паротита, клещевого энцефалита и других вирусных инфекций, возбудители которых обладают гемагглютинирующими свойствами. например, для серодиагностики клещевого энцефалита в лунки панели разливают двукратные разведения сыворотки больного на щелочном боратном буферном растворе. Затем добавляют определенное количество, обычно 8 АЕ (агглютинирующих единиц), антигена клещевого энцефалита и после 18 ч экспозиции при t° 4° вносят взвесь гусиных эритроцитов, приготовленную на кислом фосфатно-буферном растворе. Если в сыворотке крови больного есть антитела к вирусу клещевого энцефалита, то антиген нейтрализуется и агглютинация эритроцитов не происходит. 66. Система интерферона(ИФН) — важнейший фактор неспецифической резистентности организма человека.Открыли интерферон Айзексом и Линденманном 1957г.В настоящее время интерферон относят к классу индуцируемых белков клеток позвоночных. Важнейшие их функции: антивирусная, противоопухолевая, иммуномодулирующая и радиопротективная. Различают три ИФН: а-ИФН синтезируют лейкоциты периферической крови; бета-ИФН синтезируют фибробласты; у-ИФН — продукт стимулированных Т-лимфоцитов, макрофагов. По способу образования различают интерферон типа I (образуется в ответ на обработку клеток вирусами, молекулами двухцепочечной РНК, полинуклеотидами и радом низкомолекулярных природных и синтетических соединений) и ИФН типа II (продуцируется лимфоцитами и макрофагами, активированными различными индукторами; действует как цитокин.Интерферон I. Основной биологический эффект — подавление синтеза вирусных белков.Интерферон II (бета-интерферон) активирует эффекторные функции NK-клеток, Т-лимфоцитов, моноцитов, тканевых макрофагов и гранулоцитов, проявляющих антителозависимую и антите-лонезависимую цитотоксичность,блокирует депротеинизацию («раздевание») вирусов, высвобождение зрелых вирусных частиц из клетки, а также нарушает метилирование вирусной РНК. В смешанных культурах интерферон-чувствительных и интерферон-резистентных клеток «антивирусное состояние» чувствительных клеток распространяется и на популяции резистентных клеток. Интерферон подавляет репродукцию вирусов, воздействуя на транскрипцию их геномов тремя различными способами. Первый способ состоит в индукции синтеза 2',5'-олигоаденилатсинтетазы. В присутствии двухцепочечной РНК 2',5'-олигоаденилатсинтетаза полимеризует АТФ с образованием 2',5'-олигоаденилатов, которые в свою очередь активируют рибонуклеазу L, разрушающую одноцепочечные РНК. Второй способ заключается в индукции синтеза протеинкиназы PKR. Эта протеинкиназа, которая также активируется двухцепочечной РНК, путем фосфорилирования блокируетфактор инициации трансляции eIF2альфа, что приводит к подавлению синтеза белка в зараженной клетке. В основе третьего способа лежит индукция синтеза белков Мх, обладающих ГТФазной активностью и имеющих особое значение для подавления репродукции вирусов гриппа ивезикулярного стоматита. Интерфероны действуют неизбирательно, блокируя синтез не только вирусных, но и клеточных РНК и белков, что, вероятно, и приводит к гибели зараженной клетки.
67. Иммунологические методы исследования — диагностические методы исследования, основанные на специфическом взаимодействии антигенов и антител.И.м широко применяют в лабораторной диагностике инфекционных болезней. Этиологию заболевания устанавливают также на основании прироста антител к возбудителю в сыворотке крови реконвалесцента по сравнению с пробой, взятой в первые дни болезни. На основе И. м. и. изучают иммунитет населения по отношению к массовым инфекциям, например к гриппу, а также оценивают эффективность профилактических прививок. В зависимости от их механизма и учета результатов выделяют: 1. Реакции, основанные на феномене агглютинации. Агглютинация представляет собой склеивание клеток или отдельных частичек — носителей антигена с помощью иммунной сыворотки к этому антигену. Реакцию агглютинации бактерий используют для диагностики многих инфекционных болезней: бруцеллеза, туляремии, брюшного тифа и паратифов, бациллярной дизентерии, сыпного тифа,для определения группы крови. 2. Реакции, основанные на феномене преципитации. Преципитация происходит в результате взаимодействия антител с растворимыми антигенами. Простейшим примером реакции преципитации является образование в пробирке непрозрачной полосы преципитации на границе наслоения антигена на антитело.Каждая пара антиген — антитело формирует индивидуальную полосу преципитации, и реакция не зависит от наличия в исследуемой системе других антигенов и антител. 3. Реакция связывания комплемента позволяет титровать антигены или антитела по степени фиксации комплемента комплексом антиген — антитело. Реакцию применяют для серодиагностики сифилиса (реакция Вассермана), вирусных и бактериальных инфекций. 4. Реакция нейтрализации основана на способности антител нейтрализовать некоторые специфические функции макромолекулярных или растворимых антигенов, например активность ферментов, токсины бактерий, болезнетворность вирусов. Реакцию используют для обнаружения антистрептолизинов, антистрептокиназы и антистафилолизинов. 5. Реакции с использованием химических и физических меток. (ИФА)Иммунофлюоресценция заключается в использовании меченных флюорохромом антител. Меченное флюорохромом антитело образует с антигеном комплекс антиген — антитело, который становится доступным наблюдению под микроскопом в УФ-лучах, возбуждающих свечение флюорохрома. Реакцию используют для изучения кл антигенов, выявления вируса в зараженных клетках и обнаружения бактерий и риккетсий в мазках,для диагностики бешенства. 6. Иммуноблоттинг состоит из 3 этапов: разделения биологических макромолекул на отдельные белки с помощью электрофореза в полиакриламидном геле; переноса разделенных белков из геля на твердую подложку; выявления на подложке искомых.Используют при диагностике ВИЧ-инфекции. 68. Размножение (репликация) вирусов - процесс, в ходе которого вирус, используя собственный генетический материал и синтетический аппарат клетки-хозяина, воспроизводит подобное себе потомство. В самом общем виде репликация вируса на уровне единичной клетки складывается из нескольких последовательных стадий:--прикрепление вируса к клеточной поверхности;--проникновение через наружные мембраны клетки;--обнажение генома;--синтез (транскрипция) нуклеиновой кислоты вируса с образованием дочерних молекул геномной НК и, в случае ДНК-содержиших вирусов, информационной вирусной мРНК;--синтез вирус-специфических белков;--сборка новых вирионов и выход их из пораженной клетки. Прохождение всех указанных стадий составляет один цикл размножения. На уровне системы клеток в виде ткани или органа циклы размножения часто бывают асинхронными, и вирус из пораженных клеток проникает в здоровые. В эксперименте синхронизации циклов репликации удается достичь за счет высокой множественности заражения, при которой на каждую клетку приходится не менее 10 инфекционных частиц вируса. Размножение вируса обычно сопровождается подавлением биологических функций клетки и нарушениями в клеточном метаболизме, в крайней форме оно ведет к полному разрушению клетки с высвобождением вирусного потомства (цитопатогенный эффект). Репликация вируса осуществляется в цитоплазме. Сборка клеток хозяина, заполнение капсида также осуществляются в цитоплазме; высвобождение вируса сопровождается лизисом клетки. 69. Вакцины — иммунобиологические препараты, предназначенные для активной иммунопрофилактики, то есть для создания активной специфической невосприимчивости организма к конкретному возбудителю. Вакцин разделяют на живые, инактивированные (убитые, неживые), молекулярные (анатоксины) генно инженерные и химические; по наличию полного или неполного набора Аг — на корпускулярные и компонентные, а по способности вырабатывать невосприимчивость к одному или нескольким возбудителям — на моно- и ассоциированные. Живые вакцины — препараты из аттенуированных (ослабленных) либо генетически изменённых патогенных микроорганизмов, а также близкородственных микробов, способных индуцировать невосприимчивость к патогенному виду. Поскольку все живые вакцины содержат микробные тела, то их относят к группе корпускулярных вакцинных препаратов. Наиболее известны вакцина против возбудителя жёлтой лихорадки, противополи-омиелитная вакцина Сэйбина, вакцины против гриппа, кори, краснухи, паротита и аденовирусных инфекций. Дивергентные вакцины. В качестве вакцинных штаммов используют микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных болезней. Аг таких микроорганизмов индуцируют иммунный ответ, перекрёстно направленный на Аг возбудителя. Наиболее известны и длительно применяются вакцина против натуральной оспы (из вируса коровьей оспы) и БЦЖ для профилактики туберкулёза (из микобактерий бычьего туберкулёза). 70. Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений. Для выделения вирусов используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов — новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов. При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл. Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.
71. Фаги способны изменять все свои свойства: форму и размеры негативных колоний, спектр литического действия, способность к адсорбции на микробной клетке, устойчивость к внешним воздействиям, антигенные свойства. Особенно часто наблюдаются изменения морфологии негативных колоний, спектра литического действия и превращение умеренных фагов в вирулентные.Изменения фагов могут быть наследственными (мутации) и ненаследствеипыми (фенотипические). Фенотипические изменения зависят от условий, в которых образуются фаговые частицы. Выд два механизма изменчивости клеток под влиянием фагов: Трансдукция (перенос). При размножении определенных умеренных фагов на чувствительных к ним культурах фаговая частица захватывает какой-нибудь фрагмент генетического материала данной клетки. При воздействии этим же фагом на другую чувствительную к нему культуру он передает новой культуре захваченный фрагмент. При трансдукции фаг играет роль механического переносчика. Один фаг может переносить разные свойства.Трансдукция происходит редко: из одного и более миллионов фаговых частиц только одна способна осуществлять трансдукцию. При помощи трансдукции удавалось перенести от клеток-доноров клеткам-реципиентам различные свойства: токсичность, устойчивость к антибиотикам, способность продуцировать определенные ферменты, антигенные и другие свойства. Лизогенные конверсии (превращения). Как уже отмечалось, при лизогенизации клеткахозяин приобретает устойчивость к данному фагу, а также способность продуцировать зрелые частицы этого фага, при лизогенизации клетка приобретает новые, точно определенные свойства, характер которых зависит от особенностей данного фага.В отличие от трансдукции, при которой фаг выступает в роли механического переносчика генетического материала, при лизогенизации сам фаг (вернее, его нуклеиновая кислота) является тем генетическим материалом, который в виде профага придается генетическому материалу клетки. Поэтому при лизогенизации не имеет значения культура, на которой размножался данный умеренный фаг.Наиболее детально лизогенные конверсии изучены у некоторых патогенных бактерий, преимущественно у дифтерийной палочки и сальмонелл. 72. Пассивная иммунизация - введение антител к каким-либо антигенам. С помощью пассивной иммунизации можно создать только временный иммунитет продолжительностью 1-6 нед. Хотя пассивная иммунизация вызывает кратковременное повышение устойчивости к возбудителю, ее действие проявляется немедленно. Повторная пассивная иммунизация не усиливает иммунитет и часто сопровождается осложнениями. Ее обычно проводят после контакта с возбудителем и при невозможности активной иммунизации.К пассивной иммунизации прибегают для создания временного иммунитета после контакта с возбудителем инфекции в тех случаях, когда активная иммунизация по тем или иным причинам не проводится заранее (например, против цитомегаловируса, против бешенства). Пассивную иммунизацию применяют также для лечения заболеваний, вызванных бактериальными токсинами (в частности, дифтерии), укусов ядовитых змей, укусов пауков и для специфической (анти-Rh0(D)-иммуноглобулин) и неспецифической (антилимфоцитарный иммуноглобулин) иммуносупрессии. Для пассивной иммунизации пользуются тремя видами препаратов: - нормальными человеческими иммуноглобулинами (устаревшее название- гаммаглобулин) для в/м или в/в введения; - специфическими человеческими иммуноглобулинами с высоким содержанием антител против определенных возбудителей (например, против вируса гепатита В или против вируса varicella-zoster); - специфическими сыворотками, в том числе антитоксическими, полученными от иммунизированных животных. 73. На основании особ-тей жизнен цикла бактериофаги раздел на 2 группы:- вирулентные бактериофаги — фаги, жизненный цикл которых завершается лизисом клетки хозяина и выходом зрелых фаговых частиц- умеренные или лизогенизирующие бактериофаги — фаги, способные после проникновения в бактериальную клетку переходить в состояние профага и длительное время реплицироваться совместно с бактериальным геномом, передаваясь очередному поколению бактерий. 1980-е годы Эффективность лечения антибиотиками значительно понизилась. Бактерии выработали лекарственную устойчивость.Интерес к фаговой терапии возобновился. Начало 2000-х годов - Гленн Моррис - сотрудник Университета Мэриленд (США) совместно с НИИ бактериофагов, микробиологии и вирусологии в Тбилиси наладил испытания фаговых препаратов для получения лицензии на их применение в США. Июль 2007 года- бактериофаги одобрены для использования в США. 75. Под активной иммунизацией понимают стимуляцию иммунного ответа путем введения в организм антигена в той или иной форме. Повторная иммунизация способствует более выраженному иммунному ответу и повышению устойчивости к возбудителю. При инфекциях с длительным инкубационным периодом, например при бешенстве, активная иммунизация позволяет предупредить заболевание даже после заражения. Активная иммунизация была описана еще древнегреческим историком Фукидидом, заметившим, что люди, пережившие эпидемию чумы в Афинах, не заболевали ею при последующих эпидемиях. Для активной иммунизации применяют два типа вакцин: - содержащие живых ослабленных возбудителей (например, противокоревая) - содержащие инактивированных возбудителей (например, противочумная), их обезвреженные токсины (например, столбнячный анатоксин) или специфические антигены. Среди последних встречаются рекомбинантные белковые антигены (вакцина против гепатита В) и углеводные антигены - в виде очищенных капсульных полисахаридов (пневмококковая вакцина) или полисахаридов, конъюгированных с белковым носителем, например с дифтерийным или столбнячным анатоксином (вакцина против Haemophilus influenzae типа В). Для активной иммунизации против многих инфекций, в том числе полиомиелита и гриппа, используют оба типа вакцин. Живые (аттенуированные) вакцины вызывают иммунный ответ, значительно более близкий к естественному ответу на инфекцию, чем инактивированные (убитые) вакцины. В зависимости от типа антигена активная иммунизация приводит к формированию временного или постоянного иммунитета. Выпускаемые в настоящее время вакцины представлены в табл. 21.5. В ней указаны дозы, путь введения, эффективность и побочные эффекты каждой вакцины. В Центре по контролю заболеваемости можно приобрести вакцины, находящиеся на стадии разработки. Их применяют только по специальным показаниям.
74. Взаимоотношения иммунитета и инфекции определяют развитие очень многих заболеваний. В полной мере сила и «разумность» инфекции проявляются в примере динамического противостояния живых систем - вирусной инфекции и иммунитета. Если вирус «спрятался» в клетках организма человека и заблокировал их апоптоз, то найти такую инфекцию и избавить организм от нее иммунная система может с помощью Т-клеток -киллеров. Они обнаруживают небольшие фрагменты вирусных белков, встроенных на поверхность инфицированной клетки. Задача Т-киллеров - выявить все инфицированные клетки и убить их путем апоптоза, чтобы не навредить соседним неинфицированным клеткам. Так и происходит в большинстве случаев, но когда Т-клетки-киллеры не обнаруживают признаков инфекции на поверхности инфицированных клеток и превращаются в бесполезное оружие иммунитета, на помощь приходят NK-клетки, имеющие точно такой же аппарат убийства других клеток, как и Т-киллеры. Такой иммунный контроль вирусной инфекции высокоэффективен. При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов. Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ. Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки. Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага. Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. 76. Бактериофаги – (от бактерии и греч. fagos – пожиратель; синоним: фаг, бактериальный вирус)- вирус, поражающий бактерии.. Современная классификация бактериофагов включает 13 семейств, подразделенных более чем на 140 родов, которые содержат более 5300 видов фагов. Форма: Бактериофаги имеют размер 0,1-0,2 миллимикрона (миллионны доли миллиметра), что примерно составляет 1/1,000 часть от бактериальной клетки величиной около 5 микрон. Выглядят бактериофаги необычно. Есть среди бактериофагов такие, что похожи на маленькие космические станции: аккуратные кристаллы с четкими гранями, стоящие на ножках-фибриллах. Стенки корпуса кристалла выстроены из молекул белка, а внутри конструкции находится генная информация бактериофага – ДНК или РНК. Частицы сложноустроенных бактерий (напр. Т-четных бактерий) имеют головку и отросток, или "хвост". Головка состоит из белковой оболочки и заключённой в ней ДНК или РНК. В отростке различают полый стержень, окружённый чехлом, содержащим сократительные белки, подобные мышечным, и находящуюся на дистальном конце стержня базальную пластинку с шипами и нитями (от последних зависит специфическая адсорбция бактериофага на клетке-хозяине. Место обитания У бактериофагов очень разная морфология и среда обитания. Они живут везде, где есть бактерии: в воде, в почве, в каплях дождя, на поверхностях предметов, овощей, фруктов, на шерсти животных, на коже человека и внутри организма. Чем богаче среда микроорганизмами, тем больше в ней бактериофагов. Св-ва: Бактериофаги – естественные ограничители популяции бактерий.Каждый бактериофаг проникает в "свою" бактерию путем специального механизма и начинает там размножаться. Цикл - время с момента заражения бактерии до выхода потомства длится всего от 15 до 40 минут в зависимости от вида бактериофага.Бактериофаги строго избирательны. Есть бактериофаги стрептококковые, бактериофаги дизентерийные, бактериофаги стафилококковые и т.д., они существуют благодаря бактериям. Где есть бактерии, там есть и бактериофаги: в почве, воде ручья, озера, внутри организма и на коже человека, животного. В микромире бактериофаги играют роль естественных ограничителей численности бактерий. Количество бактериофагов колеблется в зависимости от количества бактерий. Если количество нужных бактериофагу бактерий снижается, то и бактериофагов становится меньше, иначе им негде будет размножаться. Поэтому бактериофаги ограничивают, но не уничтожают полностью популяцию бактерий. Соотношение бактериофагов и соответствующих бактерий находится в таком же балансе, как и соотношение хищников и грызунов в макромире.
80/крайней мере, в гомологичных клетках, опосредованной клеточными метаболическими процессами, включающими синтез РНК и белка».Система комплемента — комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов, предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета. 78. Неканонические вирусы - белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10—20x100—200 нм. Прионы ( от англ. proteinaceous infectious particles — белковые заразные частицы) — особый класс инфекционных агентов, чисто белковых, не содержащих нуклеиновых кислот, вызывающих тяжёлые заболевания центральной нервной системы человека и ряда высших животных.Открыты эти формы относительно недавно и ещё мало изучены. Прионы ведут к развитию медленных инфекций, вызывающих заболевания центральной нервной системы. Из-за длительного инкубационного периода ими болеют, в основном, пожилые люди. Смертность от медленных инфекций достигает 100%. Симптомы характерные для прионовых заболеваний: --Длительный инкубационный период (несколько лет). --Потеря мышечной координации, приводящей к проблемам с хождением, и другими сложными движениями. --Слабоумие, связанное с потерей памяти. --Бессонница. Прионовые белки накапливаются в клетках ЦНС в течение развития заболевания, вызывая следующие повреждения:-- Увеличение количества астроцитов. -- Истощение дендрито- Формирование в коре мозжечка многочисленных вакуолей (губчатая энцефал - Амилоидозис
Дата добавления: 2014-12-23; Просмотров: 2661; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |