Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Isomorphism of graphs




The simple graphs and are isomorphic if there is a one-to-one and onto function f from V 1 to V 2 with the property that a and b are adjacent in G 1 iff f(a) and f(b) are adjacent in G 2, for all a and b in V 1. Such a function f is called an isomorphism. In other words, when two simple graphs are isomorphic, there is a one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.

Example. Show that the graphs and are isomorphic.

Solution: The function f with , , and is an isomorphism.

Example. Show that the graph G and H are not isomorphic.

Solution: Both G and H have five vertices and six edges. However, H has a vertex of degree 1, namely e, whereas G has no vertices of degree 1. It follows that G and H are not isomorphic.

The number of vertices, the number of edges, and the degrees of the vertices are all variants under isomorphism. If any of these quantities differ in two simple graphs, these graphs cannot be isomorphic. However, when these invariants are the same, it does not necessarily mean that the two graphs are isomorphic.

Example. Determine whether the graphs G and H are isomorphic.

Solution: The graphs G and H have 8 vertices and 10 edges. They also both have 4 vertices of degree 2 and 4 of degree 3. Since these invariants all agree, it is still conceivable that these graphs are isomorphic. However, G and H are not isomorphic. To see this, note that since deg(a) = 2 in G, a must correspond to either t, u, x or y in H, since these are the vertices of degree 2 in H. However, each of these four vertices in H is adjacent to another vertex of degree 2 in H, which is not true for a in G.

To show that a function f from the vertex set of a graph G to the vertex set of a graph H is an isomorphism, we need to show that f preserves edges. One helpful way to do this is to use adjacency matrices. In particular, to show that f is an isomorphism, we can show that the adjacency matrix of G is the same as the adjacency matrix of H, when rows and columns are labeled to correspond to the images under f of the vertices in G that are the labels of these rows and columns in the adjacency matrix of G.

 




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 379; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.