Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение в полных дифференциалах




 

Любое дифференциальное уравнение первого порядка, разрешенное относительно старшей производной, можно записать в виде

.

Если выполнено соотношение , то уравнение называется уравнением в полных дифференциалах.

Причину такого названия понять легко. Пусть - функция двух переменных, дифференцируемая и имеющая непрерывные вторые частные производные по своим переменным. Тогда .

Если обозначить , то исходное уравнение можно записать в виде полного дифференциала

, а соотношение как раз и означает равенство смешанных производных .

Поэтому решить уравнение в полных дифференциалах – означает найти функцию (она называется потенциалом). Так как на решениях дифференциального уравнения, то потенциал будет первым интегралом исходного дифференциального уравнения:

Для решения уравнения в полных дифференциалах можно использовать два способа.

1) ,

+ .

Здесь интегрирование ведется «частным образом»: только по переменной x, считая y константой или только по y, считая x константой.

Сравнивая оба выражения для , находим функции и константы.

Если какой-либо из интегралов, например, не берется или его вычислить сложно, то можно найти + .

Затем, дифференцируя частным образом по x, надо сравнить с и определить функции и константы.

2) Потенциал можно определять по формуле (она будет выведена из независимости криволинейного интеграла от пути интегрирования позже, в 3 семестре)

. .

 

Пример. .

Решим уравнение первым способом.

Так как , то это – уравнение в полных дифференциалах.

,

.

Сравнивая оба равенства, видим, что , поэтому . Соотношение - это первый интеграл заданного дифференциального уравнения.

 

Решим уравнение вторым способом.

. Здесь принято .

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 379; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.