Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные свойства определенного интеграла




Задача о вычислении работы переменной силы

Задача о нахождении площади криволинейной трапеции

Метод интегрирования по частям

Пусть u(x) и υ(x)- непрерывно дифференцируемые функции на некотором промежутке. Тогда дифференциал их произведения равен

 

d(u υ)=udυ+υdu, (16)

 

Проинтегрируем (16) по x. Имеем

 

uυ = υ+υdu

откуда

 

υ=uυ- υdu, (17)

 

Равенство (17) называется формулой интегрирования по частям. Она позволяет нахождение одного интеграла свести к нахождению более простого интеграла.

Пример 7. Найти . Положим u=arctgx. Тогда du= , υ= и по формуле интегрирования по частям получим:

 

Пример 8. Найти ; Положим u=lnx, dυ=xdx.

Тогда du= υ= и по формуле интегрирования по частям будем иметь

.

 

 

Рассмотрим задачи, приводящие к понятию определенного интеграла.

 

 

Пусть дана неотрицательная функция y=f (x), график которой изображен на рис.3.

 

Рис.3

 

Выберем на оси OX точки a и b и восставим из них перпендикуляры до пересечения с кривой. Фигура, ограниченная кривой, перпендикулярами и осью OX, называется криволинейной трапецией. Вычислим площадь этой трапеции. Для этого разобьем отрезок на n частичных отрезков точками

 

.

 

Внутри каждого отрезка длины выберем произвольную точку k . Составим произведения ,…

Каждое такое произведение равно площади прямоугольника с основанием и высотой, равной значению функции в произвольной точке соответствующего отрезка. Сумма таких произведений

 

(18)

 

называется интегральной суммой для функции f(x) на отрезке и равна площади всех прямоугольников.

Если каждый из отрезков достаточно мал, т.е. и т.д., то площадь заштрихованной области (рис.3) стремится к площади криволинейной трапеции, равной

, (19)

 

Таким образом, задача о вычислении площади криволинейной трапеции сводится к определению предела интегральной суммы (18).

 

Пусть материальная точка единичной массы перемещается из точки a в точку b оси OX под воздействием переменной силы, направленной вдоль оси OX (т.е., сила является функцией x: у=f(x)). Требуется найти работу A этой силы.

Разобьем отрезок произвольно на n частей точками (рис.4)

 

.

 

 

Рис.4

При достаточно мелком разбиении можно считать, что на каждом отрезке величина силы f(x) почти постоянна и приближенно равна ее значению в некоторой точке k ; f(x) для любых точек Є .

Работа силы на каждом отрезке тогда будет приближенно равна , где , а работа силы по перемещению массы вдоль всего отрезка будет приближенно равна

 

, (20)

 

Значение работы A будет тем точнее, чем мельче будет разбиение. Поэтому для получения точного значения работы переменной силы на всем отрезке необходимо перейти к пределу при

 

(21)

 

Таким образом, и для вычисления работы переменной силы необходимо уметь определять предел интегральной суммы (18).

Функция f(x) на отрезке называется интегрируемой, если существует такое число I, к которому стремится интегральная сумма (1) при . Тогда число называется определенным интегралом функции на отрезке и обозначается

;

 

- область интегрирования, называется нижним пределом интегрирования, - верхним пределом интегрирования. Из сказанного следует, что

 

, (22)

 

Таким образом, вычисление площади криволинейной трапеции и работы переменной силы связано с нахождением определенного интеграла.

 

 

1. Определенный интеграл с равными пределами равен нулю:

.

2. При перемене местами пределов интегрирования величина определенного интеграла изменяется на противоположную:

.

 

3. Если отрезок интегрирования разделен на конечное число n частичных отрезков , то определенный интеграл от функции на отрезке равен сумме определенных интегралов от этой функции на каждом из частичных отрезков (свойство аддитивности):

 

 

.

 

4. ,

 

где - постоянный множитель.

5. Определенный интеграл от алгебраической суммы конечного числа функций, интегрируемых на отрезке , равен алгебраической сумме определенных интегралов этих функций на данном отрезке:

 

.

 

Величина определенного интеграла от функции , непрерывной на отрезке , равна приращению любой из первообразных для этой функции на данном отрезке:

, (23)

 

Формула (23) называется формулой Ньютона-Лейбница.

Из этой формулы следует, что для вычисления определенного интеграла достаточно найти какую-либо из первообразных для подынтегральной функции и из ее значения, соответствующего верхнему пределу интегрирования, вычесть значение, соответствующее нижнему пределу.

Пример 9. Вычислить определенный интеграл .

Решение. Первообразной для функции (имеющей наиболее простой вид), является . Поэтому в соответствии с формулой Ньютона-Лейбница имеем .

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 534; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.