КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Виды коррозии и методы их оценки
Коррозией металлов называют самопроизвольное разрушение металлических материалов вследствие химического или электрохимического взаимодействия их с окружающей средой. Первопричиной коррозии является термодинамическая неустойчивость металлов в различных средах при данных внешних условиях. Разнообразие условий, сред, свойств и структуры материалов является причиной различных видов коррозии. По механизму протекания коррозионного процесса различают химическую и электрохимическую коррозию. Химическая коррозия подчиняется основным законам чисто химической кинетики гетерогенных реакций, не сопровождающихся возникновением электрического тока, в отличие от электрохимической коррозии, подчиняющейся законам электрохимической кинетики с протеканием электрического тока. По типу агрессивных сред, в которых протекает процесс разрушения материалов, коррозия может быть следующих видов: • газовая (коррозия металлов в газах при высоких температурах); • атмосферная (в атмосфере воздуха или влажных газах); • коррозия в неэлектролитах (химическая коррозия металлов в неэлектропроводящих жидких средах); • коррозия в электролитах (электрохимическая коррозия в электропроводных жидких средах, расплавах, растворах щелочей, солей, кислотах); • подземная коррозия (в почвах, грунтах); • биокоррозия (под воздействием продуктов жизнедеятельности микроорганизмов); • коррозия блуждающим током (под воздействием блуждающих токов, например, электрокоррозия металла трубопровода, кабеля). По условиям протекания коррозионного процесса различают следующие виды коррозии: • контактная коррозия (при контакте металлов, имеющих различные потенциалы в данном электролите); • щелевая коррозия (коррозия в щелях, зазорах металла с другими материалами); • коррозия при неполном погружении в жидкую коррозионную среду; • коррозия при полном погружении в жидкую коррозионную среду; • коррозия при переменном погружении металла целиком или частично в жидкую коррозионную среду; • коррозия при трении (коррозионно-механическое изнашивание); • фреттинг-коррозия (изнашивание при фреттинг-коррозии); • коррозионная кавитация; • коррозия под напряжением (при воздействии коррозионной среды и постоянной или переменной нагрузке). По характеру разрушения коррозию подразделяют на сплошную, охватывающую всю поверхность, и местную, охватывающую отдельные участки поверхности. Сплошная коррозия может быть: • равномерной (металл разрушается на примерно одинаковую глубину по всей поверхности); • неравномерной (металл разрушается на отдельных участках на различную глубину); • избирательной (разрушается преимущественно структурная составляющая металла или один компонент сплава). Местная коррозия может быть следующих видов: • пятнами (в виде отдельных пятен), • язвенная (в виде отдельных глубоких раковин), • точечная или питтинг (в виде отдельных точечных поражений, имеющих значительную глубину), • сквозная (разрушение металла насквозь), • межкристаллитная (преимущественно по границам зерен), • ножевая (локализованная в зоне сплавления сварных соединений). Требования к защите промышленного оборудования от коррозии установлены Единой системой стандартов защиты от коррозии и старения материалов (ЕСЗКС), а также отраслевыми стандартными и многочисленными методическими рекомендациями по отдельным видам оборудования. Основные ГОСТы: 9.005-89, 9.008-82, 9.014-92, 9.028-91, 9.101-89, 9.102-91, 9.103-78, 9.301-90, 9.302-88, 9.304-87, 9.305-90, 9.306-87, 9.502-89, 5272-68, 6130-89, 16149-70,25821-93. Методы испытаний на коррозию различных материалов в различных условиях отражены в ГОСТах: 9.019-89, 9.021-83, 9.039-90, 9.068-87, 9.067-76, 9.049-91, 9.071-89, 9.308-85, 9.507-88, 9.701-89, 9.706-81, 9.710-84, 9.713-86, 9.715-86, 9.707-89, 9.902-86, 9.903-81, 9.904-82, 9.905-90, 9.907-83, 9.040-74, 9.309-86, 9.703-90, 25821-93. Способность сопротивляться разрушающему воздействию коррозионной среды характеризует коррозионную стойкость металла. Основные количественные показатели различных видов коррозии и коррозионной стойкости материалов определяют согласно ГОСТ 9.908-90. Коррозионная стойкость характеризуется скоростью коррозии, т.е. количеством металла, растворяющегося с единицы поверхности в единицу времени, или скоростью проникновения коррозии, т.е. глубиной коррозионного разрушения металла в единицу времени. Массовый показатель коррозии определяется по потере массы образца металла , отнесенной к площади образца S и времени коррозии t ГОСТ 9.908-90 устанавливает десятибальную шкалу коррозионной стойкости металлов при условии их равномерной коррозии
Расчет проникновения коррозии (П) в мм/год производят по формуле [мм/год]; где К - потеря масс, г/м2год, d - плотность материала, г/см3. Учитывая важность в обеспечении безопасной работы сосудов, работающих под давлением в химической промышленности, возможность их разрушения в результате межкристаллитной коррозии, стандартизированы (ГОСТ 6032-89) методы испытания на межкристаллитную коррозию коррозионно-стойких сталей и сплавов ферритного, аустенитного, аустенитно-мартенситного, аустенитно-ферритного классов, а также сварных соединений, наплавленного металла и металла шва. К таким сталям относятся высоколегированные хромоникелевые стали типа 2Х18Н9, 2Х13Н4Г9, Х18Н10Т, Х23Н28МЗДЗТ и другие, предназначенные для работы с высокоагрессивными реагентами. Дополнительно ГОСТ 9.914-91 устанавливает электрохимические методы (потенциостатического травления, капельный, измерение потенциала коррозии, потенциодинамической реактивации) определения стойкости против межкристаллитной коррозии коррозионностойких сталей 08Х18Н10Т и 12Х18Н10Т. Испытания на стойкость к питтинговой коррозии коррозионностойких сталей проводят выдерживанием образцов в растворе трихлорида железа с последующим определением потери массы образца (ГОСТ 9.912-89). Метод испытания жаростойких металлов и сплавов на термоусталость в газовых потоках установлен ГОСТ 9.910-88. По характеру исследований методы испытаний на коррозионную стойкость подразделяют на лабораторные, внелабораторные, эксплуатационные. Ввиду разнообразия коррозии методы испытаний не стандартизированы, однако частично регламентированы ведомственными техническими условиями. Общие требования к проведению коррозионных испытаний, требования к образцам материалов (типу, форме, качеству, изготовлению, подготовке), требования к аппаратуре и реактивам, к методам проведения испытаний, обработке результатов испытаний устанавливает ГОСТ 9.905-90. Для оценки влияния климатических факторов стендовые испытания проводят в специальных барокамерах, имитирующих внешнее давление, солнечную радиацию, температурные условия, влажность, воздействие специальных штаммов бактерий и другие факторы. Исследования на атмосферную коррозию проводят на полигонах, расположенных в соответственных климатических зонах. Исследования коррозии в морской воде проводят на специальных морских станциях или судах. Для определения коррозионной активности грунтов на трассе проектируемого трубопровода на определенном расстоянии закладывают на дне шурфов в ненарушенный грунт на отметке трубопровода образцы стальных пластинок. Грунт при этом характеризуется структурой, влажностью, влагоемкостью, воздухопроницаемостью, показателем рН, составом и концентрацией солей, электропроводностью. Исследуют метеорологические данные (температуру, осадки) за период испытаний. В ряде случаев при эксплуатации трубопроводов проводят непрерывное исследование коррозии по контрольным образцам материалов, прикрепленных к трубопроводу. При исследовании коррозионных процессов широко используют метод образцов-свидетелей, устанавливаемых в работающем аппарате, трубопроводе, машине. Скорость процессов разрушения материалов существенно (иногда на несколько порядков) увеличивается под совместным воздействием механических и коррозионных факторов. В связи с этим ГОСТ 9.903-81 устанавливает методы ускоренных испытаний на коррозионное растрескивание высокопрочных сталей и титановых сплавов. Стандарт устанавливает различные методы испытаний: при постоянной нагрузке, при ступенчато меняющейся нагрузке, при постоянном деформировании. Критерием оценки стойкости материала к коррозионному растрескиванию является пороговый коэффициент интенсивности накопления напряжений, характеризующий сопротивление материала росту трещины при коррозионном растрескивании (в заданных условиях), ниже которого трещины отсутствует или скорость роста не превышает 0,0001 мм/час. Общие требования к выбору образцов, использованию и обработке результатов испытаний на коррозионное растрескивание сформулированы в ГОСТ 9.901.1-89. Применительно к испытаниям образцов при одноосном растяжении эти требования устанавливает ГОСТ 9.901.4-89; образцов в виде изогнутого бруса при изгибе -ГОСТ 9.901.2-89. При оценке безопасности оборудования помимо коррозионной стойкости металлов необходим контроль материалов уплотнительных устройств. Вулканизированные эластичные герметизирующие материалы испытывают на стойкость к воздействию жидких агрессивных сред при заданных температурах и продолжительности испытаний по одному или нескольким следующим показателям (ГОСТ 9.068-87): • условной прочности при растяжении и относительному удлинению при разрыве, • прочности связи герметика с металлом при отслаивании, • изменение массы, • скорости отслаивания герметика от металла при постоянной отслаивающей нагрузке. Испытания резин на стойкость к воздействию агрессивных сред при постоянном растягивающем напряжении проводят по ГОСТ 9.065-84 и оценивают по времени до разрыва образца и скорости ползучести. Резины также испытывают: • на стойкость к старению при статической деформации сжатия (ГОСТ 9.029-81, 9.070-76), • на стойкость к термическому старению (ГОСТ 9.024-89), • на стойкость в ненапряженном состоянии к воздействию жидких агрессивных сред (ГОСТ 9.030-92), • на стойкость при вращательном движении в режиме трения (ГОСТ 9.061-89), • на стойкость к воздействию агрессивных сред при статической деформации сжатия (ГОСТ 9.070-89), • на стойкость к воздействию жидких агрессивных сред при многократных деформациях растяжения (ГОСТ 9.062-75). В случае воздействия биологических факторов на элементы конструкции коррозию называют биологической (ГОСТ 9.102-91). Под биологическим фактором понимают организмы или сообщества организмов, вызывающих нарушение исправного или работоспособного состояния объекта. Стойкость объекта сохранять значение показателей в пределах, установленных нормативно-технической документацией в течение заданного времени в процессе или после воздействия биофактора, называют биостойкостью. Испытания на биостойкость подразделяют на лабораторные и в природных условиях.
Дата добавления: 2015-04-30; Просмотров: 1903; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |