Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные клинические симптомы СПИДа. 5 страница




Выделяют центральную нервную систему, которая состоит из головного и спинного мозга, и периферическую, состоящую из нервов, отходящих от головного и спинного мозга, межпозвоночных нервных узлов, а также из периферического отдела вегетативной нервной системы.
25.строене и функции нейронаСтруктурной единицей нервной системы является нервная клетка —нейрон. Он состоит из тела клетки, ядра, разветвленных отростков —дендритов —по ним нервные импульсы идут к телу клетки —и одного длинного отростка —аксона —по нему нервный импульс проходит от тела клетки к другим клеткам или эффекторам. Отростки двух соседних нейронов соединяются особым образованием — синапсом. Он играет существенную роль в фильтрации нервных импульсов: пропускает одни импульсы и задерживает другие. Нейроны связаны друг с другом и осуществляют объединенную деятельность.

Нейроны: функции

Как и другие клетки, нейроны должны обеспечивать поддержание собственной структуры и функций, приспосабливаться к изменяющимся условиям и оказывать регулирующее влияние на соседние клетки. Однако основная функция нейронов - это переработка информации: получение, проведение и передача другим клеткам. Получение информации происходит через синапсы с рецепторами сенсорных органов или другими нейронами, или непосредственно из внешней среды с помощью специализированных дендритов. Проведение информации происходит по аксонам, передача - через синапсы

Вся нервная система делится на центральную и периферическую. К центральной нервной системе относится головной и спинной мозг. От них по всему телу расходятся нервные волокна —периферическая нервная система. Она соединяет мозг с органами чувств и с исполнительными органами — мышцами и железами.

Все живые организмы обладают способностью реагировать на физические и химические изменения в окружающей среде.

Стимулы внешней среды (свет, звук, запах, прикосновение и т.п.) преобразуются специальными чувствительными клетками (рецепторами) в нервные импульсы —серию электрических и химических изменений в нервном волокне. Нервные импульсы передаются по чувствительным (афферентным) нервным волокнам в спинной и головной мозг. Здесь вырабатываются соответствующие командные импульсы, которые передаются по моторным (эфферентным) нервным волокнам к исполнительным органам (мышцам, железам). Эти исполнительные органы называются эффекторами.

Основная функция нервной системы —интеграция внешнего воздействия с соответствующей приспособительной реакцией организма.

Структурной единицей нервной системы является нервная клетка —нейрон. Он состоит из тела клетки, ядра, разветвленных отростков —дендритов —по ним нервные импульсы идут к телу клетки —и одного длинного отростка —аксона —по нему нервный импульс проходит от тела клетки к другим клеткам или эффекторам.

Отростки двух соседних нейронов соединяются особым образованием — синапсом. Он играет существенную роль в фильтрации нервных импульсов: пропускает одни импульсы и задерживает другие. Нейроны связаны друг с другом и осуществляют объединенную деятельность.

Центральная нервная система состоит из головного и спинного мозга. Головной мозг подразделяется на ствол мозга и передний мозг. Ствол мозга состоит из продолговатого мозга и среднего мозга. Передний мозг подразделяется на промежуточный и конечный.

Все отделы мозга имеют свои функции.

Так, промежуточный мозг состоит из гипоталамуса —центра эмоций и витальных потребностей (голода, жажды, либидо), лимбической системы (ведающей эмоционально-импульсивным поведением) и таламуса (осуществляющего фильтрацию и первичную обработку чувственной информации).

У человека особенно развита кора больших полушарий — орган высших психических функций. Она имеет толщину 3— мм, а общая площадь ее в среднем равна 0,25 кв.м.

Кора состоит из шести слоев. Клетки коры мозга связаны между собой.

Их насчитывается около 15 миллиардов.

Различные нейроны коры имеют свою специфическую функцию. Одна группа нейронов выполняет функцию анализа (дробления, расчленения нервного импульса), другая группа осуществляет синтез, объединяет импульсы, идущие от различных органов чувств и отделов мозга (ассоциативные нейроны). Существует система нейронов, удерживающая следы от прежних воздействий и сличающая новые воздействия с имеющимися следами.

По особенностям микроскопического строения всю кору мозга делят на несколько десятков структурных единиц —полей, а по расположению его частей —на четыре доли: затылочную, височную, теменную и лобную.

Кора головного мозга человека является целостно работающим органом, хотя отдельные его части (области) функционально специализированы (например, затылочная область коры осуществляет сложные зрительные функции, лобно-височная —речевые, височная —слуховые). Наибольшая часть двигательной зоны коры головного мозга человека связана с регуляцией движения органа труда (руки) и органов речи.

Все отделы коры мозга взаимосвязаны; они соединены и с нижележащими отделами мозга, которые осуществляют важнейшие жизненные функции. Подкорковые образования, регулируя врожденную безусловно-рефлекторную деятельность, являются областью тех процессов, которые субъективно ощущаются в виде эмоций (они, по выражению И.П.Павлова, являются “источником силы для корковых клеток”).

В мозгу человека имеются все те структуры, которые возникали на различных этапах эволюции живых организмов. Они содержат в себе “опыт”, накопленный в процессе всего эволюционного развития. Это свидетельствует об общем происхождении человека и животных.

По мере усложнения организации животных на различных ступенях эволюции значение коры головного мозга все более и более возрастает.

Если, например, удалить кору головного мозга у лягушки (она имеет незначительный удельный вес в общем объеме ее головного мозга), то лягушка почти не изменяет своего поведения. Лишенный коры головного мозга голубь летает, сохраняет равновесие, но уже теряет ряд жизненных функций. Собака с удаленной корой головного мозга становится полностью не приспособленной к окружающей обстановке.

Основным механизмом нервной деятельности является рефлекс. Рефлекс

— реакция организма на внешнее или внутреннее воздействие при посредстве центральной нервной системы.

Термин “рефлекс”, как уже отмечалось, был введен в физиологию французским ученым Рене Декартом в XVII веке. Но для объяснения психической деятельности он был применен лишь в 1863 году основоположником русской материалистической физиологии М.И.Сеченовым. Развивая учение И.М.Сеченова, И.П.Павлов экспериментально исследовал особенности функционирования рефлекса.

Все рефлексы делятся на две группы: условные и безусловные.

Безусловные рефлексы —врожденные реакции организма на жизненно важные раздражители (пищу, опасность и т.п.). Они не требуют каких-либо условий для своей выработки (например, рефлекс мигания, выделение слюны при виде пищи).

Безусловные рефлексы представляют собой природный запас готовых, стереотипных реакций организма. Они возникли в результате длительного эволюционного развития данного вида животных. Безусловные рефлексы одинаковы у всех особей одного вида; это физиологический механизм инстинктов. Но поведение высших животных и человека характеризуется не только врожденными, т.е. безусловными реакциями, но и такими реакциями, которые приобретены данным организмом в процессе его индивидуальной жизнедеятельности, т.е. условными рефлексами.

Условные рефлексы —физиологический механизм приспособления организма к изменяющимся условиям среды.

Условные рефлексы —это такие реакции организма, которые не являются врожденными, а вырабатываются в различных прижизненных условиях.

Они возникают при условии постоянного предшествования различных явлений тем, которые жизненно важны для животного. Если же связь между этими явлениями исчезает, то условный рефлекс угасает (например, рычание тигра в зоопарке, не сопровождаясь его нападением, перестает пугать других животных).

Мозг не идет на поводу только текущих воздействий. Он планирует, предвосхищает будущее, осуществляет опережающее отражение будущего. В этом состоит самая главная особенность его работы. Действие должно достичь определенного будущего результата —цели. Без предварительного моделирования мозгом этого результата невозможна регуляция поведения.

Современная наука о мозге —нейрофизиология —базируется на концепции функционального объединения механизмов мозга для осуществления поведенческих актов. Эта концепция была выдвинута и плодотворно развивалась учеником И.П.Павлова академиком П.К.Анохиным в его учении о функциональных системах.

Функциональной системой П.К.Анохин называет единство центральных и периферических нейрофизиологических механизмов, которые в своей совокупности обеспечивают результативность поведенческого акта.

Первоначальная стадия формирования любого поведенческого акта названа П.К.Анохиным афферентным синтезом (в переводе с латинского —“соединение приносимого”).

В процессе афферентного синтеза происходит обработка разнообразной информации, поступающей из внешнего и внутреннего мира, на основе доминирующей в данный момент мотивации (потребности). Из многочисленных образований мозга извлекается все то, что было связано в прошлом с удовлетворением данной потребности.

Установление того, что данная потребность может быть удовлетворена определенным действием, выбор этого действия называется принятием решения.

Нейрофизиологический механизм принятия решения назван П.К.Анохиным акцептором результатов действия. Акцептор (“ассерtare”—разрешающий) результатов действия —это нейрофизиологический механизм предвидения результатов будущего действия. На основе сопоставления ранее полученных результатов создается программа действия. И только после этого совершается само действие. Ход действия, результативность его этапов, соответствие этих результатов сформированной программе действия постоянно контролируется путем получения сигналов о достижении цели. Этот механизм постоянного получения информации о результатах совершаемого действия назван П.К.Анохиным обратной афферентацией. Итак, деятельность мозга является отражением внешних воздействий как сигналов для тех или иных приспособительных действий. Механизмом наследственного приспособления являются безусловные рефлексы, а механизмом идивидуально изменчивого приспособления являются условные рефлексы, сложные комплексы функциональных систем.

26.общие свойства анализаторовМы отметили, что в строении анализаторов много общего, принципиально они устроены однотипно. Это позволяет нам предполагать, что имеются и такие свойства, которые присущи всем органам чувств. И наше предположение достаточно обосновано. Действительно, можно выделить ряд общих, как их называют, психофизиологических или психофизических свойств анализаторов. Что же это за свойства?

1. Чрезвычайно высокая чувствительность к адекватным раздражителям. Как уже отмечалось, эта чувствительность близка к теоретическому пределу, и по существу такой уровень чувствительности в технике во многих случаях пока еще недостижим. Можно было бы даже сказать, что если бы чувствительность наших органов чувств вдруг оказалась на порядок выше, то это бы только затруднило нашу жизнь. В этом случае мы бы в буквальном смысле слышали, как растут растения, как бежит кровь по сосудам, броуновское движение молекул и тому подобное.

Количественной мерой чувствительности является пороговая интенсивность, то есть наименьшая интенсивность раздражителя, воздействие которого дает ощущение. Чем ниже пороговая интенсивность, или, как часто говорят просто, порог, тем выше чувствительность, и наоборот.

2. Все анализаторы обладают дифференциальной, или различительной, или контрастной, чувствительностью, то есть обладают способностью устанавливать различие по интенсивности между раздражителями. Эта функция анализатора определяется наименьшей величиной (называемой разностным или дифференциальным порогом), на которую следует изменить силу раздражителя, чтобы вызвать едва заметное, минимальное изменение ощущения.

Данное положение впервые было введено немецким физиологом Эрнстом Генрихом Вебером в середине 19-го века и подвергнуто математическому анализу немецким физиком Густавом Теодором Фехнером (1860 год), который показал, что интенсивность наших ощущений пропорциональна логарифму интенсивности раздражителя. Данное положение вошло в физиологию как основной психофизический закон Вебера-Фехнера. Вспомним, что процесс логарифмирования сигнала осуществляется уже на рецепторном уровне и, как видите, сохраняется для анализатора в целом.

Однако впоследствии было показано, что чаще имеет место степенная, а иногда и иного рода зависимость. Однако для нас сейчас самое главное, что необходимо отметить, - это наличие строгого количественного взаимоотношения между интенсивностью ощущения и интенсивностью раздражителя.

3. Характерным для анализаторов является их свойство приспосабливать уровень своей чувствительности к интенсивности раздражителя. Это свойство получило название адаптации. В общем виде в процессе адаптации при высоких интенсивностях воздействующих раздражителей чувствительность понижается и, наоборот, при низких повышается. В нашей жизни примеров тому очень много. Вспомните, если вы опоздали к началу киносеанса, то, войдя в зрительный зал, сначала вы ничего не видите. Но проходит несколько минут и начинают хорошо различаться и зрители, и кресла, и вы без труда находите свободное место. Но вот вы выходите в ярко освещенное помещение и снова ничего не видите - вы "ослеплены", но эта слепота очень быстро проходит. Таким образом, благодаря адаптации поддерживается относительная стабильность интенсивности наших ощущений независимо oт интенсивности воздействующих раздражителей.

Однако внимательный читатель сразу возразит, что здесь явное противоречие закону Вебера-Фехнера! Нет, никакого противоречия нет. Основной психофизический закон предполагает оценку наших ощущений на стабильном уровне адаптации. Когда же чувствительность меняет свой уровень, то, как это очевидно из разобранного примера, меняется и соотношение между интенсивностью ощущения и интенсивностью раздражителя.

Интересно заметить, что адаптации подвержены и отдельные элементы сенсорных систем, в частности рецепторы. Но в них она протекает совершенно иначе. Адаптация рецепторов чаще всего выражается в том, что они реагируют или на начало действия раздражителя, или на его прекращение, или на изменение интенсивности. Даже при таком остром ощущении, как боль! Наверное, многим приходилось получать уколы при введении лекарств. Хорошо известно, что боль, и довольно резкая, ощущается в момент введения иглы, но когда она введена и остается неподвижной, - боль исчезает. Однако стоит только пошевелить иглу, как снова ощущается резкая боль.

Процессы адаптации происходят и в нервных элементах сенсорных систем. Механизм ее довольно сложен, но сущность сводится к настройке, обеспечивающей оптимальное восприятие сигнала.

4. Анализаторам присуща тренируемостъ. Это свойство заключается как в повышении чувствительности, так и в ускорении адаптационных процессов под влиянием самой сенсорной деятельности. В повседневной жизни и в литературе мы можем найти достаточно много примеров, когда ощущения человека, как говорят, "обостряются". Именно в этом смысле употребляют выражения "чуткие пальцы пианиста", "наметанный глаз охотника", "тонкий слух музыканта" и многие другие. Все эти примеры говорят об упражняемости, тренируемости наших органов чувств, что дает иногда весьма значительное повышение чувствительности, обеспечивая тем самым более совершенное реагирование на раздражители внешней и внутренней среды.

5. Очень своеобразным свойством анализаторов является их способность некоторое время сохранять ощущению после прекращения действия раздражителя. Такая "инерция" ощущений обозначается как последействие, или последовательные образы. Очевидно, каждый человек без всякого труда может вспомнить и не только вспомнить, но и немедленно проверить это явление. Действительно, стоит нам посмотреть на яркую электрическую лампочку и затем закрыть глаза, как мы сможем убедиться в наличии такой инертности зрения. На примере зрения это выражено особенно ярко, но практически у всех анализаторов имеется это свойство.

Естествен вопрос - а не извращает ли последовательный образ наши представления о реальном внешнем мире? Можно ли в таком случае "доверять" нашим ощущениям? Вполне! Более того, следовые процессы в анализаторах абсолютно необходимы для восприятия и опознания образов. В частности, если человеку только на сотые доли секунды предъявить какую-либо достаточно хорошо освещенную и не очень сложную картинку, то, несмотря па столь кратковременную экспозицию, исследуемый вполне правильно опишет это изображение. Но если теперь вслед за первым предъявлением сразу же дать второе в виде какого-либо неоформленного образа, то второе изображение "сотрет" первое, и человек уже не сможет опознать показанный ему первый тест.

Длительность последовательного образа очень сильно зависит от интенсивности раздражителя, и в некоторых крайних случаях будет даже ограничивать возможности анализатора, например, по восприятию прерывистых стимулов или при необходимости срочно перейти к восприятию раздражителей слабой интенсивности.

6. Анализаторы в условиях нормального функционирования находятся в постоянном взаимодействии. И такое взаимодействие вполне "рационально", биологически оправдано. Проявляется оно в том, что раздражитель, падающий на какую-либо одну афферентную систему, вызывает изменения функционального состояния не только этой афферентной системы, но и других. Обратите внимание, что подавляющее большинство предметов и явлений внешнего мира представляет собой очень богатую гамму весьма разнообразных раздражителей, воспринимаемых различными органами чувств.

Весьма своеобразным проявлением взаимодействия является викариирование (от латинского vicarius - заменяющий) органов чувств, или их взаимозаменяемость. Сразу же надо оговориться, что такое замещение в прямом смысле этого слова никогда не бывает и не может быть полным. Например, слепой человек не может увидеть едущий автомобиль, но, воспринимая звук его двигателя, вибрацию почвы, запах выхлопных газов и некоторые другие признаки, он безошибочно опознает его. Именно за счет этой замечательной способности к викариированию люди, лишенные некоторых, иногда даже нескольких анализаторов, живут полноценной жизнью, воспринимая окружающий нас мир во всем многообразии его проявлений.

Таким образом, нами рассмотрены свойства анализаторов, при помощи которых специфическая энергия адекватного раздражителя трансформируется в процесс нервного возбуждения. Распространение этого возбуждения до высших уровней центральной нервной системы приводит к формированию ощущения. Было показано, что характер ощущения детерминирован объективными качествами раздражителя. Благодаря данным свойствам анализатор из громадного множества самых разнообразных явлений внешнего мира или внутренней среды выделяет и воспринимает только те изменения, которые являются для него адекватными. Он обладает механизмами, позволяющими оценить интенсивность этого раздражителя, его длительность, локализацию (местоположение) в пространстве, частоту следования или модуляции, сравнить его с аналогичными воздействиями.

Однако это аналитические процессы, и если бы все заканчивалось только ими, то окружающий нас мир представлялся бы нам не в виде образов, предметов, событий, явлений, а в виде какой-то какофонии звуков, мельканий, обонятельных и вкусовых ощущений и так далее, что, кстати, и бывает иногда при некоторых видах очень серьезных психических заболеваний. Следовательно, существуют еще механизмы синтеза, которые, интегрируя эти элементарные процессы, приводят к формированию образа и опознанию его. Очень существенно, что процессы анализа и синтеза находятся в тесном единстве и постоянном взаимодействии.

Как уже упоминалось, начальным этапом такого синтеза является принцип детектирования, то есть функционирование таких нервно-рецепторных комплексов, для которых адекватным воздействием по существу является уже достаточно сложный набор элементарных раздражителей, обозначаемый как признак. Было отмечено, что это врожденная способность нервных образований. Можно в принципе считать, что, чем выше уровень афферентной системы, тем больше становится сложность выделяемых признаков. И вместе с тем на высших уровнях сенсорной системы функционируют элементы, которые интегрируют информацию, получаемую от различных детекторов, и "сравнивают" ее по нескольким признакам с хранящимися в памяти эталонами.

Таким образом, заключительный этап афферентного синтеза представляет собой выработанный в процессе индивидуальной жизнедеятельности механизм. Если представить, что человек никогда в жизни не видел самолета, не читал и не слышал о нем, то, увидев его впервые и, безусловно, получив всю афферентную информацию о нем, он не опознает его. В процессе естественного развития человека идет интенсивное накопление сенсорного опыта, сенсорное обучение, которое является основой для его последующей сенсорной деятельности.

Итак, мы ознакомились с общими принципами строения и функционирования наших органов чувств, а теперь перейдем к рассмотрению конкретных вопросов деятельности анализаторов.

27.Зрительный анализатор представлен воспринимающим отделом – рецепторами сетчатой оболочки глаза, зрительными нервами, проводящей системой и соответствующими участками коры в затылочных долях мозга.

Нервные пути сетчатки глаза состоят из цепи трех нейронов. Первый нейрон - это палочковидные и колбочковидные зрительные клетки, второй – биполярные нейроциты, третий – ганглиозные нейроциты, центральные отростки которых собираются в зрительном диске и идут в составе зрительного нерва.

Волокна медиальной части зрительного нерва перекрещиваются. После перекреста в составе зрительного пути каждой стороны нервные волокна идут от наружной половины сетчатой оболочки глаза и медиальной половины сетчатой оболочки второго глаза. Волокна зрительного пути заканчиваются на каждой стороне в трех подкорковых центрах зрения: латеральном коленчатом теле, подушке бугра и в сером слое верхнего холмика среднего мозга. Первые два центра являются зрительными, третий – рефлекторным.

Центральные отростки клеток латерального коленчатого тела и подушки бугра направляются через задний отдел заднего бедра внутренней капсулы к корковому концу зрительного анализатора, расположенного на дне и по краям шпорной борозды.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 315; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.