Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Билет 4




Билет

Билет

Электрической цепью называется совокупность элементов, образующих пути для прохождения электрического тока. Электрическая цепь состоит из активных и пассивных элементов.

Активными элементами считаются источники электрической энергии (источники напряжения и тока), к пассивным элементам относятся резисторы, катушки индуктивности, электрические конденсаторы.

Количественные характеристики элементов электрической цепи называются ее параметрами. Например, параметрами источника постоянного напряжения являются его ЭДС и внутреннее сопротивление. Параметром резистора служит его сопротивление катушки — ее индуктивность L и конденсатора — емкость С.

Напряжение или ток, подводимые к цепи, будем называть воздействующим или входным сигналом. Воздействующие сигналы можно рассматривать как различные функции времени, изменяющиеся по некоторому закону z(t). Например, z(t) может быть постоянной величиной, изменяться во времени по периодическому закону или иметь апериодический характер.

Напряжения и токи, возникающие под влиянием внешнего воздействия в интересующей нас части электрической цепи и также являющиеся функциями времени х(t), будем называть реакцией (откликом) цепи или выходным сигналом.

Любой пассивный элемент реальной электрической цепи в той или иной степени обладает активным сопротивлением, индуктивностью и емкостью. Однако, чтобы облегчить изучение процессов в электрической цепи и ее расчет, реальная цепь заменяется идеализированной, состоящей из отдельных пространственно разделенных элементов R, L, С.

При этом считается, что проводники, соединяющие элементы цепи, не обладают активным сопротивлением, индуктивностью и емкостью. Такая идеализированная цепь называется цепью с сосредоточенными параметрами, и основанные на ней расчеты дают во многих случаях хорошо подтверждаемые опытом результаты.

Электрические цепи с постоянными параметрами - это такие такие цепи, в которых сопротивления резисторов R, индуктивность катушек L и емкость конденсаторов С являются постоянными, не зависящими от действующи в цепи токов и напряжений. Такие элементы называются линейными.

Если сопротивление резистора R не зависит от тока, то линейная зависимость между падением напряжения и током выражается законом Ома ur = R х ir, а вольт-амперная характеристика резистора (представляет собой прямую линию (рис. 1,а).

Если индуктивность катушки не зависит от величины (протекающего в ней тока, то потокосцепление самоиндукции катушки ψ прямо пропорционально этому току ψ= L х il (рис. 1,б).

Наконец, если емкость конденсатора С не зависит от приложенного к обкладкам напряжения uc то заряд q, накопленный на пластинах, и напряжение uc связаны между собой линейной зависимостью графически показанной на рис. 1,в.

Рис. 1. Характеристики линейных элементов электрической цепи: а - вольт-амперная характеристика резистора, б - зависимость потокосцепления от тока в катушке, в - зависимость заряда конденсатора от напряжения на нем.

Линейность сопротивления, индуктивности и емкости носит условный характер, так как в действительности все реальные элементы электрической цепи являются нелинейными. Так, при прохождении тока через резистор последнийнагревается и его сопротивление изменяется.

Чрезмерное увеличение тока в катушке с ферромагнитным сердечником может несколько изменит ее индуктивность. В той или иной степени изменяется емкость конденсаторов с различными диэлектриками в зависимости от приложенного напряжения.

Однако в нормальном рабочем режиме элементов эти изменения обычно столь незначительны, что при расчетах могут не приниматься во внимание и такие элементы электрической цепи считаются линейными.

Транзисторы, работающие в режимах, когда используются прямолинейные участки их вольт-амперных характеристик, также условно могут рассматриваться как линейные устройства.

Электрическая цепь, состоящая из линейных элементов, называется линейной электрической цепью. Процессы в таких цепях описываются линейными алгебраическими или дифференциальными уравнениями. Для анализа процессов в линейных электрических цепях используются законы Кирхгофа.

Школа для электрика

 

Превращение механической энергии в электрическую. Явление возникновения электрического тока при движении проводника в магнитном поле широко используется в электрических генераторах. При движении проводника длиной l в магнитном поле перпендикулярно вектору индукции в нем под действием ЭДС индукции возникает электрический ток I. На проводнику током действует сила Ампера .
Применив правило левой руки, можно убедиться, что направление вектора силы Ампера противоположно направлению вектора скорости движения проводника (рис. 202).

Следовательно, для равномерного движения проводника к нему должна быть приложена внешняя сила , равная по модулю силе Ампера , но направленная в противоположную сторону: . Эта сила при перемещении проводника на расстояние совершает работу, равную

.(57.1)

Мы получили, что работа внешних сил, вызывающих движение проводника в магнитном поле, равна работе ЭДС индукции в электрической цепи.

Машина постоянного тока как электрический генератор. Физический принцип действия машины постоянного тока как генератора основан на явлении возникновения ЭДС индукции в рамке из проводника при вращении ее в магнитном поле (рис. 203).

Основными частями машины постоянного тока являются индуктор, с помощью которого создается магнитное поле, якорь, в обмотке которого наводится ЭДС индукции, коллектор и электрические щетки. Коллектором называются изолированные друг от друга проводящие пластины, присоединенные к катушкам. По пластинам коллектора скользят электрические щетки, соединяющие концы обмоток с внешней электрической цепью.
Если индуктор в машине постоянного тока неподвижен и является в этом случае статором машины, то якорь вращается и является ротором машины.
Якорь имеет стальной сердечник цилиндрической формы, концы обмоток якоря присоединены к пластинам коллектора.
При вращении якоря в магнитном поле индуктора в проводах его обмоток возникает ЭДС индукции.
С потребителями электрической энергии через скользящие контакты коллектора и электрических щеток соединяются концы той обмотки якоря, в которой в данный момент времени ЭДС индукции имеет максимальное значение.
Провода обмотки движутся перпендикулярно линиям индукции магнитного поля. При этом между концами проводника возникает ЭДС индукции, которая прямо пропорциональна скорости движения проводника в магнитном поле, длине проводника l и индукции магнитного поля. Поэтому на концах разомкнутой обмотки, содержащей N витков, напряжение будет равно

.(57.2)

Так как линейная скорость движения проводника связана с частотой вращения ротора и его радиусом R выражением

,

то формулу (57.2) следует записать

.(57.3)

Так как площадь рамки равна , а магнитный поток Ф можно определить как , то напряжение на выходе генератора равно

.(57.4)

Машина постоянного тока как электродвигатель. Замечательной особенностью машины постоянного тока является ее обратимость, т. е. возможность использования одной и той же машины как для преобразования механической энергии в электрическую, так и для преобразования электрической энергии в механическую.
Для использования машины постоянного тока в качестве электродвигателя через обмотку индуктора пропускают постоянный ток.
При подключении к щеткам постоянного напряжения возникает электрический ток в обмотке якоря и на провода обмотки со стороны магнитного поля действует сила Ампера .
В проводах обмотки, расположенных на противоположных сторонах якоря, направления сил Ампера противоположны друг другу, и под действием этих сил якорь приходит во вращение (рис. 204).

Электродвигатель может использоваться для приведения в движение колес электровоза, троллейбуса, трамвая, автобуса.
С помощью электродвигателя постоянного тока — стартера — производится запуск двигателя автомобиля. Например, рабочее напряжение стартера автомобиля «Жигули» — 12 В, сила тока в обмотке при максимальной мощности — 260 А, скорость вращения якоря — 1800 об/мин.


ЛИНЕЙНЫЕ ЦЕПИ - электрические цепи, в которых ток прямо пропорционален приложенному напряжению (между током и напряжением существует линейная зависимость). Сопротивление линейной цепи постоянно и не зависит от приложенного к нему напряжения.

3 билет

9.Узел, ветвь, контур. Первый и второй законы Кирхгоффа.

Эл.цепь называется линейной, если она содержит только линейные элементы.

Линейный элемент – это сопротивление, которое не зависит от протекающего тока и действующего

напряженя.

Точка на схеме называется узлом, если в ней соединяются 2 или более проводов.

Ветвь эл.цепи – ее участок, состоящий из одного или нескольких элементов, соединенных так, что по ним

протекает один и тот же ток.

Контур эл.цепи – это замкнутый путь, проходящий по нескольким ветвям.

1 закон:

Сумма втекающих в узел токов равна сумме вытекающих из узла токов.

2 закон

Алгебраическая сумма ЭДС в контуре равна алгебраической сумме напряжений на всех элементах этого

В энергетических системах наряду с однофазными двухобмоточными автотрансформаторами (рис. a) часто применяют трехфазные двухобмоточные автотрансформаторы (рис. c), а также однофазные (рис. b) и трехфазные (рис. d.) трехобмоточные автотрансформаторы. Однофазные обмотки, соединенные по автотрансформаторной схеме, обозначают символом Iавто, трехфазные обмотки, соединенные по автотрансформаторной схеме в звезду с выведенной нулевой точкой, обозначают символом Yн.авто.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 915; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.