Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные теоремы дифференциального исчисления Теорема Лагранжа




Основные теоремы дифференциального исчисления. Теорема Роля

Теорема (Ролля). Если функция y=f(x) непре­рывна на [а, b], дифференцируема на (а, b) и f (а) ==f(b), то существует точка cÎ0(а,b), такая, что f'(c)=0. Доказательство. Если f постоянна на [а, b], то для всех cÎ(a, b) производная f'(c)=0.

Будем теперь считать, что f непостоянна на [а, b]. Так как f непрерывна на [а, b], то существует точка x1Î [а, b], в которой f достигает максимума на [а, b] и существует точка х2Î[а, b], в кото­рой f достигает минимума на [а, b]. Обе точки не могут быть концевыми точками отрезка [а,b], потому что иначе max f(x)=minf(x)=f(a) =f(b) и f была бы постоянной на [а, b]. Следовательно, одна из точек x1,х2 принадлежит к интервалу (а, b). Обозна­чим ее через c. В ней достигается локальный экстремум. Кроме того, f'(c) существует, потому что по условию f' (x) существует для всех х Î(а, b). Поэтому по теореме Ферма f’(c)=0.{} Теорема Ролля имеет простой геометри­ческий смысл. Если выполнены условия теоремы, то на графике функции y=f(x) существует точка (c,f(c)) касательная в кото­рой параллельна оси х.

 
 

Теорема(Лагранжа). Пусть функция f(x) непрерывна на отрезке [а, b] и имеет про­изводную на интервале (а,b). Тогда существует на ин­тервале (а, b) точка с, для которой выполняется равенство (f(b)-f(a))/(b-a)=f'(c) (а<с<b). Док-во: tga=k=(f(b)-f(a))/(b-a) Þ существует т. с в которой касат. к графику параллельна стяг прям концов крив. Рассмотрим вспомогательную функ-цию F(x)=f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a) данная функ-ция удовлетворяет всем условиям теор Ролля, т.к. она непрерыва на [a,b] в силу непрерывнотси f(x) и (x-a) и имеет на интервале(a,b) F’(x)=f’(x)-(f(b)-f(a))/(f-a) xÎ(a,b) и F(a)=0=F(b) Þ по теореме Ролля $ сÎ(a,b) | F’(c)=0 Þ f(c)-(f(b)-f(a))/(b-a)=0

Теорема Лагранжа имеет простой геометрический смысл, если записать ее в виде (f(b)-f(a))/(b-a)=f’(c) (a<c<b) Левая часть этого равенства есть тангенс угла наклона к оси х хорды, стягивающей точки (a, f(a)) и (b,f (b)) графика функции y=f(x), а правая часть есть тангенс угла наклона касательной к графику в некоторой про­межуточной точке с абсциссой с Î(а, b). Теорема Лагранжа утверждает, что если кривая есть график непре­рывной на [а, b] функции, имеющей производную на (a, b), то на этой кри­вой существует точка, соответствующая некоторой абсциссе с (а < с < b) такая, что касательная к кривой в этой точке параллельна хорде, стягивающей концы кривой (а, f(а)) и (b, f(b))

 

59. Основные теоремы дифференциального исчисления. Теорема Коши

Если функции f(x) и g(x) не­прерывны на [а, b] и дифференцируемы на (а, b), и g'(x)¹0 в (а, b), то существует точка cÎ(a, b) такая, что(f(b)-f(a))/(g(b)-g(a))=f’(c)/g’(c)

Доказательство. Отметим, что g(b)-g(a)¹0, так как в противном случае, по теореме Ролля нашлась бы точка g такая, что g'(c)=0, чего быть не может по условию теоремы. Составим вспомогательную функцию F(x)=f(x)-f(a)-(f(b)-f(a))×(g(x)-g(a))/(g(b)-g(a)) В силу условия теоремы эта функция F непрерывна на [а, b], дифференцируема на (а, b) и F(a)=0, F(b)=0. Применяя теорему Ролля, получим, что существует точка cÎ(a, b), в которой F'(c)=0 Но F’(x)=f’(x)-(f(b)-f(a))×g’(x)/(g(b)-g(a)) поэтому, подставляя вместо х точку c, получаем утверж­дение теоремы.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 610; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.