Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Работа постоянной силы равняется скалярному произведению силы на перемещение




Единица измерения работы - Джоуль (1 Дж = 1 Н·м).

Свойства работы:

· работу совершает только тангенциальная составляющая силы A = Ft·S;

· работа результирующей силы равна сумме работ составляющих сил. Например, в случае действия постоянной силы A = Ft·S = SFti·S = SA;

· работа на перемещении S равна сумме работ на отдельных участках этого перемещения, т.е. работа является аддитивной величиной: A = Ft·SSi = SAi.

Работа переменной силы. В общем случае криволинейного движения величина работы рассчитывается посредством интегрирования. Для этого все перемещение мысленно разобьем на отдельные элементарные участки D S такой малой длины, что их можно считать прямолинейными, а действующую на этих участках силу - постоянной.

Работу при перемещении частицы из начал.положения в конечное рассчитаем согласно выражению, где Ai - работа силы на каждом участке. Предел суммы работ на отдельных участках траектории 1-2 при D S стремящемся к нулю является определенным интегралом и представляет собой искомую величину работы:

18. " Энергия - общая количественная мера движения и взаимодействия всех видов материи. Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую. Понятие энергии связывает воедино все явления природы.

В соответствии с различными формами движения материи рассматривают различные формы энергии: механическую, внутреннюю, электромагнитную, химическую, ядерную и др. Это деление условно."

19. Потенциальная энергия заряда q, помещенного в электрическое поле, пропорциональна величине этого заряда. Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

 

Потенциал φ является энергетической характеристикой электростатического поля.

20. Вычислим работу при перемещении электрического заряда в однородном электрическом поле с напряженностью . Если перемещение заряда происходило по линии напряженности поля на расстояние Ad = d1-d2 (рис. 110), то работа равна

где d1 и d2 — расстояния от начальной и конечной точек до пластины В.

В механике было показано, что при перемещении между двумя точками в гравитационном поле работа силы тяжести не зависит от траектории движения тела. Силы гравитационного и электростатического взаимодействия имеют одинаковую зависимость от расстояния, векторы сил направлены вдоль прямой, соединяющей взаимодействующие точечные тела. Отсюда следует, что и при перемещении заряда в электрическом поле из одной точки в другую работа сил электрического поля не зависит от траектории' его движения.

21. Теорема об изменении кинетической энергии доказанная для точки (§ 14.4) будет справедлива для любой точки системы

Составляя такие уравнения для всех точек системы и складывая их почленно получаем:

или, согласно:

что является выражением теоремы о кинетической энергии системы в дифференциальной форме.

Проинтегрировав получаем:

- теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее конечном перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил.

Подчеркнем, что внутренние силы не исключаются. Для неизменяемой системы сумма работ всех внутренних сил равна нулю и

Если связи, наложенные на систему, не изменяются со временем, то силы, как внешние так и внутренние, можно разделить на активные и реакции связей, и уравнение теперь можно записать:

В динамике вводится такое понятие как "идеальная" механическая система. Это такая система, наличие связей у которой не влияет на изменение кинетической энергии, то есть

Такие связи, не изменяющиеся со временем и сумма работ которых на элементарном перемещении равна нулю, называются идеальными, и уравнение запишется:

 

22. Потенциальная энергия скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной. Ek1 + Ep1 = Ek2 + Ep2

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

23. Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями Δ S, расположенными симметрично относительно плоскости (рис. 2.12).

   
  Рис. 2.11 Рис. 2.12  
       

Тогда

Применим теорему Остроградского-Гаусса. Поток ФЕ через боковую часть поверхности цилиндра равен нулю, т.к. Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

;

откуда видно, что напряженность поля плоскости S равна:

   

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

24. Формула Гаусса — Остроградского является аналогом формулы Грина — Остроградского. Эта формула связывает поверхностный интеграл второго рода по замкнутой поверхности с тройным интегралом по пространственной области, ограниченной этой поверхностью.

Для вывода формулы Гаусса — Остроградского надо воспользоваться рассуждениями, подобными тем, которые использовались при нахождении формулы Грина — Остроградского.

Рассматривается сначала поверхность, ограниченная сверху и снизу некоторыми поверхностями, заданными известными уравнениями, а сбоку ограниченную цилиндрической поверхностью. Затем рассматривается вариант когда поверхность ограничена цилиндрической поверхностью с образующими, параллельными дум доугим координатным осям.

После этого полученные результаты обобщаются, приводя к формуле Гаусса — Остроградского:

Отметим, что эта формула применима для вычисления поверхностных интегралов по замкнутой поверхности.

На практике формулу Гаусса — Остроградского можно применять для вычисления объема тел, если известна поверхность, ограничивающая это тело.

25. Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии на отрезке оси :

Из двух последних выражений получаем

Откуда

Последнее выражение дает среднее значение на отрезке . Чтобы

получить значение в точке нужно произвести предельный переход:

Так как может изменяться не только при перемещении вдоль оси , но также и при перемещениях вдоль других направлений, предел в этой формул представляет робой так называемую частную производную от по :

Это соотношение справедливо для любого направления в пространстве, в частности и для направлений декартовых координатных осей х, у, z:

Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 544; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.