Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Концевые вихри имеют значительное влияние на аэродинамику самолёта, его устойчивость и управляемость




Крутка

В описании про удлинение крыла показано, что даже у прямого плоского крыла условия обтекания профиля по размаху меняются, в т.ч. из-за концевого вихреобразования. Чтобы снизить его отрицательные последствия, надо установить профиль у концевого сечения под меньшим углом атаки, чем у корневого, – т.е. применить отрицательную крутку крыла. Геометрическая крутка оптимальна только на одной расчетной скорости полета. Чтобы расширить диапазон оптимизации применяют аэродинамическую крутку крыла, – ставят на конце менее несущий профиль. Он обладает меньшей кривизной, и его поляра проходит ниже поляры корневого профиля. В случае хорошего согласования поляр можно сделать крыло, обладающее более широким диапазоном скоростей высокого аэродинамического качества, чем при геометрической крутке. Однако такой способ сложнее в проектировании.

АЭРОДИНАМИЧЕСКАЯ КРУТКА

ГЕОМЕТРИЧЕСКАЯ и АЭРОДИНАМИЧЕСКАЯ КРУТКА

... В конце 60-х годов в ЦАГИ и в ряде ОКБ начались проработки и изучение новых направлений в развитии боевой авиации....
В аэродинамике были открыты новые возможности значительного увеличения несущих свойств самолета при достаточно малом приращении сопротивления. Это новое направление исследований ЦАГИ основывалось на рациональном использовании специально индуцируемых вихрей на верхней поверхности крыла, т.е. на "управлении" вихрями. Образование этих вихрей производилось за счет заостренных наплывов, расположенных в корневой части крыла...."

"... Дальнейшие расчетные и экспериментальные исследования выявили... еще целый ряд важных свойств крыльев сложной формы в плане:
- при дозвуковых скоростях несущие свойства крыльев сложной формы в плане имеют нелинейный благоприятный характер и сохраняются до больших углов атаки, поэтому располагаемая подъемная сила у таких крыльев значительно выше, чем у исходных крыльев, что обеспечивает возможность достижения лучших взлетно-посадочных и маневренных характеристик;..."

"... Использование узких треугольных крыльев или других форм в плане в качестве наплывов, устанавливаемых перед тонким крылом умеренного удлинения и стреловидности (с=5-6%, лямбда=2,5-5, Хпк=30-40 град.), изменяет характер обтекания консоли при углах атаки, превышающих критические для крыла без наплыва; кромочный вихрь (вихрь, сходящий с передней кромки консолей крыла) под воздействием вихря с наплыва смещается к концевым сечениям крыла, в результате чего зона безотрывного обтекания консолей существенно расширяется. На частях консоли и центроплана, лежащих под вихрем с наплыва, возникают зоны разрежения; разрежение имеет место и на частях консоли, подверженных влиянию кромочного вихря. Регулярное течение на большей части верхней поверхности крыла наблюдается до альфа=34 град...."

Концевые перетекания.

 

 

Поток воздуха перетекает с нижней поверхности крыла на верхнюю и накладывается на воздушный поток, набегающий на верхнюю часть крыла, что приводит к образованию завихрений массы воздуха за задней кромкой, т. е. образуется вихревой жгут. Воздух в вихревом жгуте вращается. Скорость вращения вихревого жгута различна, в центре она наибольшая, а по мере удаления от оси вихря - уменьшается.Вихревые жгуты левого и правого полукрыльев вращаются в разные стороны таким образом, что в пределах крыла движение воздушных масс направлено сверху вниз.

 

 

Сила скоса потока за крылом определяется силой концевых вихрей.

Из-за уменьшения местного угла атаки подъёмная сила крыла будет меньше той величины, которую можно было бы получить при условии отсутствия концевых вихрей. Причиной уменьшения подъёмной силы в данном случае является сам процесс создания подъёмной силы. Чтобы компенсировать этот эффект нужно увеличить угол атаки, а это приведет к увеличению лобового сопротивления. Этот прирост называется индуктивным сопротивлением, и он напрямую зависит от силы концевых вихрей.

 

Чем больше скорость, тем меньше индуктивное сопротивление. Это происходит, потому что вертикальные скорости, индуцированные вихрем, накладываясь на возросшую поступательную скорость (по треугольнику) дают меньшее изменение местного угла атаки. Соответственно меньше наклон вектора подъёмной силы назад, а значит и меньше индуктивное сопротивление. Индуктивное сопротивление обратно пропорционально квадрату скорости.

 

При С y равном нулю – индуктивное сопротивление тоже равно нулю. Главный вклад в индуктивное сопротивление вносят вихревые жгуты. Весьма распространено заблуждение в области аэродинамики, что эти вихревые жгуты, - единственные виновники индуктивного сопротивления.

Это не так. Даже крыло очень большого размаха все равно обладает индуктивным сопротивлением, но гораздо меньшим по абсолютной величине. У крыла два конца. Интенсивность отсоса энергии в концевой вихревой жгут зависит от погонной подъемной силы крыла, определяемой разностью давлений. Отсюда очевидное решение: поскольку конца всего два, надо уменьшить погонную подъемную силу, т.е. увеличить размах крыла при той же его площади. А это и означает увеличение удлинения крыла. Приближенно можно считать, что концевой жгут сильно снижает погонную подъемную силу на расстоянии до двух хорд от конца крыла. Поэтому для крыльев удлинения 4 и меньше, краевые эффекты радикально влияют на подъемную силу и индуктивное сопротивление крыла, в наибольшей мере определяя аэродинамическое качество крыла в целом.

Как и разряжение на верхней поверхности крыла, вихревые жгуты по концам крыла можно увидеть собственными глазами при пилотаже сверхзвуковых самолетов. Когда самолет резко маневрирует, с концов крыльев срываются жгуты белой пелены из конденсата влаги, содержащейся в воздухе

ИТОГО факторы, влияющие на индуктивное сопротивление:

- Величина подъёмной силы. Чем больше сила тяжести самолёта и перегрузка, тем больше подъёмная сила, соответственно больше индуктивное сопротивление. (Перегрузкой называется отношение подъёмной силы к силе тяжести самолёта). Индуктивное сопротивление пропорционально квадрату подъёмной силы.

- Скорость самолёта. Чем больше скорость, тем меньше индуктивное сопротивление. Это происходит, потому что вертикальные скорости, индуцированные вихрем, накладываясь на возросшую поступательную скорость (по треугольнику) дают меньшее изменение местного угла атаки. Соответственно меньше наклон вектора подъёмной силы назад, а значит и меньше индуктивное сопротивление. Индуктивное сопротивление обратно пропорционально квадрату скорости.

- Удлинение крыла. Концевые вихри на крыле большого удлинения влияют на относительно меньшую часть крыла. Индуктивное сопротивление обратно пропорционально удлинению крыла.

 

Из вышесказанного можно сделать вывод, что крылья большого удлинения требуются для самолётов, которые большую часть лётного времени проводят на режимах больших потребных Су. К этой категории относятся транспортные самолёты.

 

 

На рисунке показано влияние удлинения крыла график подъёмной силы. Чем больше удлинение, тем меньше требуется угол атаки для производства той же подъёмной силы и увеличивается чувствительность на изменение угла атаки.

 

На следующем рисунке показана зависимость лобового сопротивления крыла от подъёмной силы при различных значениях удлинения крыла. Из него видно, что крыло с большим удлинением имеет меньшее сопротивление, поскольку индуктивное сопротивление очень зависит от удлинения крыла. При больших удлинениях крыла сопротивление мало изменяется при росте подъёмной силы, но на больших Су (малых приборных скоростях) сопротивление начинает резко увеличиваться.

 

Использование крыльев большого удлинения на самолётах ограничено следующими факторами:

- Большой изгибающий момент крыла. Его уменьшают, размещая в крыле топливо и навешивая на крыло двигатели.

- Уменьшение располагаемых угловых скоростей крена (особенно на малых скоростях). При кренении самолёта на опускающемся полукрыле местные углы атаки увеличиваются, а на поднимающемся – уменьшаются. Возникает разность подъёмных сил полукрыльев, препятствующая кренению (демпфирующий момент). Чем больше удлинение крыла, тем на большую величину будет увеличиваться угол атаки в районе законцовки крыла при той же угловой скорости крена, следовательно, будет больше демпфирующий момент.

- Уменьшение расстояния от земли до законцовки крыла при создании крена на взлёте или посадке.

 

Формула индуктивного сопротивления: Xi = ½ rV2Cx iS,

где ½ rV2– скоростной напор; Cx i - коэффициент индуктивного сопротивления; S - площадь крыла.

Коэффициент индуктивного сопротивления зависит от коэффициента подъёмной силы и удлинения крыла: Cxi = Су2/l.

Рассмотрим, как меняется индуктивное сопротивление по скорости. Допустим, скорость выросла в два раза, значит, скоростной напор увеличится в четыре раза (½ rV2). Значит, для сохранения подъёмной силы Сууменьшится в четыре раза (Y = ½ rV2CyS). Это приведет к уменьшению коэффициента индуктивного сопротивления в шестнадцать раз (Су2/l). Подставляя изменившиеся значения скоростного напора и CxIв формулу индуктивного сопротивления, получим, что оно уменьшится в четыре раза.

 

Методы уменьшения индуктивного сопротивления:

Плоские пластины, расположенные на концах крыльев ограничивают развитие концевого вихря, не производя подъёмной силы, а значит, не увеличивая изгибающий момент крыла. Тем не менее, они повышают вредное сопротивление самолёта, что на больших скоростях может свести на нет эффект уменьшения сопротивления.

Форма законцовки крыла влияет на силу концевого вихря. На Боинге-787 используется загнутая назад законцовка крыла.

 

Топливные баки на законцовках крыльев играют ту же роль, что и плоские пластины, но при этом ещё, за счёт веса топлива, уменьшают изгибающий момент крыла.

Крылышки (загнутые вверх законцовки крыла, winglets). Они спрофилированы и установлены так, что производят небольшую силу, направленную вперед (отрицательное сопротивление). Крылышки частично блокируют поток воздуха от нижней поверхности крыла к верхней, уменьшая силу концевого вихря. Кроме того, маленький вихрь с законцовки взаимодействует с концевым вихрем крыла и ослабляет его.

 




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 3322; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.