Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Произвольные функции и логические схемы




 

Поскольку значениями логических функций могут быть только 0 или 1, то любые логические функции можно использовать как аргументы других логических функций, т.е. строить из простых функций более сложные. Пусть в таблице 1.2. задана произвольная функция Y трех аргументов, и ее нужно выразить с помощью простых функций НЕ, И, ИЛИ.

Очевидно, что Y = 1, когда или a c = 1 (строка 1), или (строка 3), или (строка 6), или (строка 7).

Таблица 1.2.

Аргументы Функция Аргументы Функция
  a b c Y   a b c Y
                   
                   
                   
                   
                       

 

Все это можно записать в виде одного общего аналитического выражения: (1.1)

Полученное аналитическое выражение называют совершенной дизъюнктивной нормальной формой (СДНФ). СДНФ состоит из элементарных конъюнкций, соединенных знаками дизъюнкций. Конъюнкцию называют элементарной, если в нее не входит по несколько одинаковых букв. Число элементарных конъюнкций в СДНФ обязательно равно числу единичных значений функции в таблице истинности. В каждую элементарную конъюнкцию СДНФ входят обязательно все аргументы функции в прямой или инверсной форме.

Поскольку процедуру построения СДНФ в принципе можно применить к таблице, содержащей любое число аргументов при любом расположении единичных значений функции, то можно сделать важный вывод: с помощью набора функций НЕ, И, ИЛИ можно выразить любую логическую функцию. Такой полный набор называют логическим базисом или просто базисом.

Нетрудно показать, что базисами являются также и другие наборы:

НЕ, И; НЕ, ИЛИ; И-НЕ и ИЛИ-НЕ.

Для построения логической схемы, реализующей функцию, заданную таблицей истинности, обычно удобнее аналитическая форма представления функции. В данном случае - это выражение (1.1). Схема, реализующая (1.1), показана на рис. 1.6. Она состоит из трех ярусов. В первом ярусе расположены инверторы. Очевидно, что максимальное число инверторов не превышает числа аргументов. Во втором ярусе расположены элементы И, реализующие входящие в формулу элементарные конъюнкции. Число входов каждого элемента равно числу аргументов реализуемой функции, а число элементов- числу элементарных конъюнкций в формуле. В третьем ярусе схемы стоит элемент ИЛИ, число входов которого равно числу дизъюнкций в формуле.

Рис.1.6. Логическая схема, реализующая (1.1).

 




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 304; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.