Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производная по направлению: определение, физический смысл, вычислительная формула




Определение. Пусть в нек-ой окрестности определена функция Производной функции называется такое число , что функцию в окрестности U (x 0) можно представить в виде f (x 0 + h) = f (x 0) + Ah + o (h), если существует.

Определение производной функции через предел. Пусть в некоторой окрестности точки определена функция Производной функции f в точке x 0 называется предел, если он существует,

 

Дифференцируемость. Производная функции f в точке x 0, будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция f является дифференцируемой в точке x 0тогда и только тогда, когда её производная в этой точке существует и конечна:

Для дифференцируемой в x 0 функции f в окрестности U (x 0) справедливо представление при

Замечания. Назовём Δ x = xx 0 приращением аргумента функции, а Δ y = f (x 0 + Δ x) − f (x 0) приращением значения функции в точке x 0. Тогда

Пусть функция имеет конечную производную в каждой точке Тогда определена производная функция

Функция, имеющая конечную производную в точке, непрерывна в ней. Обратное не всегда верно.




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 461; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.