Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 20. Взаимодействие электронов и позитронов с веществом 2 страница




Полное сечение, определяющее число g-квантов, выбывших из первичного пучка (в расчете на один электрон), дается формулой Клейна-Нишины-Тамма:

, (21.5)

где x = 2 Eγ / mec 2. Рассмотрим ее предельные случаи.

При x << 1 (нерелятивистский случай) число рассеянных g-квантов линейно убывает с ростом энергии g-квантов

.

В обратном, ультрарелятивистском случае (x >> 1)

.

Таким образом, сечение комптоновского рассеяния уменьшается с ростом энергии фотона; в пределе Eg ® ¥ практически обратно пропорционально Eg (рис. 21.1). Полное сечение рассеяния γ-квантов на атоме пропорционально числу электронов, т.е. .

Энергетический спектр электронов отдачи (комптоновских электронов) непрерывен: их кинетическая энергия Te распределена в интервале от 0 до максимальной величины, определяемой формулой Л.8 (ПРИЛОЖЕНИЕ Л).

Указанный на рис. 21.1 ход кривой, изображающей зависимость sК от Еg, относится к случаю бесконечно узкого пучка и точечного детектора, когда рассеянные на небольшой угол g-кванты не регистрируются. Однако на опыте употребляются пучки с конечным углом раствора, а детектор не является точечным. Поэтому весьма важно знание углового распределения рассеянных g-квантов.

При малых значениях x угловое распределение следует закону (1 + cos2 φ), характерному для классической электромагнитной теории (φ – угол рассеяния γ-кванта). Это распределение симметрично относительно φ = π/2. Вероятность рассеяния максимальна при φ = 0о и 180о. С увеличением x угловое распределение становится все более и более направленным вперед. Кривые рис. 21.2 иллюстрируют характер углового распределения рассеянного g-излучения для различных значений Еg. При x >> 1 практически все рассеянное излучение можно считать сосредоточенным в узком конусе с углом раствора φ = 2/ x.

В некоторых случаях необходимо учитывать скорости электронов, взаимодействующих с фотонами. Движение атомных электронов приводит к заметному разбросу энергий рассеянных фотонов и электронов отдачи (при фиксированном θ). В частности, если импульс электрона больше импульса летящего ему навстречу фотона, то последний не теряет, а приобретает энергию (обратный эффект Комптона).

Кроме электронов эффект Комптона может происходить и на других заряженных (а также нейтральных, но имеющих ненулевой магнитный момент) частицах, например на протоне или нейтроне. Однако сечения рассеяния при этом очень малы, так как обратно пропорциональны квадрату массы частицы.

В заключение обсуждения комптоновского рассеяния g-квантов отметим, что с этим явлением связано не только их рассеяние, но и последующее фотоэлектрическое поглощение в веществе. Если источник g-квантов со всех сторон окружить достаточно большими блоками из легкого вещества (например, алюминия), то за пределы блоков g-излучение уже не выйдет. Это будет не так, если бы имело место классическое рассеяние. Однако при комптоновском рассеянии часть энергии g-кванта передается электрону. Поэтому в результате многократного рассеяния в блоке g-квант постепенно потеряет большую часть своей энергии, и, в конце концов, поглотится, так как сечение фотоэффекта быстро растет с уменьшением энергии и становится больше, чем сечение рассеяния (рис. 21.1). На явлении многократного рассеяния основано устройство защиты от g-квантов из бетона, кирпича и т.д.

21.4. Образование электрон-позитронных пар. При энергиях g-квантов, превышающих 2 mec 2 (1,022 МэВ), наблюдается процесс поглощения g-квантов с образованием пары электрон-позитрон:

g + а ® e + e + + а.

Энергия g-кванта тратится на создание этих двух частиц и на сообщение им кинетической энергии; таким образом, образование пары – эндотермический процесс. Исходя из законов сохранения энергии и импульса, можно показать, что образование пары в вакууме невозможно (ПРИЛОЖЕНИЕ К). Это может происходить только при взаимодействии g-излучения с другими частицами. В результате образования пары энергия и импульс должны распределиться между электроном, позитроном и какой-то третьей частицей (ядром или электроном), в поле которой образовалась пара. Если применить к процессу образования пары анализ, изложенный в п. 11.2, станет ясно, что при образовании пары в поле ядра пороговая энергия фотона равна 2 mec 2, а в поле электрона 4 mec 2.[178]

Оценим энергию отдачи при рождении пары в поле ядра. Максимальная отдача будет наблюдаться в том случае, если электрон и позитрон вылетают под углами 90о относительно направления движения γ-кванта, причем угол их разлета равен 180о. В этом случае импульс ядра отдачи равен импульсу γ-кванта, и для энергии отдачи справедлива формула (9.6). Отсюда получаем, что для Еg = 10 МэВ при атомной массе вещества А > 10 энергия ядер отдачи не превышает 5 кэВ (т.е. менее 0,05%). Тогда сумма кинетических энергий электрона и позитрона с хорошей точностью равна

. (21.6)

При относительно малых величинах Еg эта энергия распределяется почти равновероятно между электроном и позитроном. С ростом Еg преобладающим становится асимметричное распределение. Спектры электронов и позитронов несколько различаются, если принять во внимание, что при удалении от ядра, в поле которого образовалась пара, электроны испытывают торможение, а позитроны ускорение. Этот эффект тем больше, чем выше заряд ядра Z и чем меньше Еg. Испускание электрона и позитрона при больших энергиях γ-кванта происходит в направлении движения последнего в пределах угла θmec 2/ Еg. При малых энергиях угловое распределение менее анизотропно и зависит от Z.

Чем сильнее электрическое поле частицы, с которой взаимодействует γ-квант, тем вероятнее образование пар. Для сечения образования пары в поле «голого» ядра квантовая электродинамика дает следующее выражение:

. (21.7)

Для легких атомов (aZ << 1) σП ~ Z 2. Учет экранирования ядра атомными электронами приводит к тому, что в пределе Eg ® ¥ сечение процесса практически перестает зависеть от Eg. Энергетическая зависимость сечения образования пар показана на рис. 21.1.

При малых энергиях и больших Z сечение образования пары в поле электрона примерно в 103 раз меньше. Однако при Еg > 10 МэВ оно составляет около 1% общего сечения в тяжелых элементах и около 10% в легких. Энергия отдачи, получаемая атомным электроном, в этом случае того же порядка, что и кинетическая энергия частиц пары.

Образование электрон-позитронных пар в сочетании с радиационным торможением является причиной возникновения электрон-фотонных ливней в космических лучах (п. 18.6). Если фотон тормозного излучения имеет энергию Еg >> mec 2, он может образовать пару, электрон и позитрон которой при торможении снова создают фотоны, и т.д. Процесс нарастает лавинообразно до тех пор, пока не будет достигнута критическая энергия (п. 20.4).

В широком диапазоне энергий γ-квантов суммарное сечение их взаимодействия с веществом s Σ складывается из сечений трех основных процессов – фотоэффекта, эффекта Комптона и образования пар:

. (21.8)

Из характера зависимости каждого из этих сечений от энергии γ-квантов следует, что в области малых энергий основным механизмом взаимодействия является фотоэффект, в промежуточной области – эффект Комптона,[179] а в области высоких энергий – образование электрон-позитронных пар. Значения энергии, отделяющие области преобладания каждого из трех эффектов, различны для разных сред. Сечение σ Σ имеет минимум в области, где наиболее велико влияние комптоновского рассеяния (рис. 21.1). Этот минимум особенно резко выражен для тяжелых элементов.

21.5. Коэффициент ослабления. Экспоненциальный закон поглощения γ-квантов. Итак, при прохождении через вещество g-излучение в общем случае испытывает поглощение и рассеяние. Как при поглощении, так и при рассеянии g-квант выбывает из падающего пучка в результате единичного акта. Число g-квантов, удаляемых из пучка при прохождении поглотителя толщиной dx, пропорционально dx и числу g-квантов N, падающих на слой dx. Таким образом, уменьшение числа g-квантов в пучке равно

. (21.9)

Коэффициент пропорциональности m называется полным линейным коэффициентом ослабления. Как следует из (21.9), линейный коэффициент ослабления имеет физический смысл относительного уменьшения числа g-квантов в пучке, приходящееся на единицу длины пути в веществе. Очевидно, величине m можно придать и другой смысл: это среднее число столкновений g-кванта с атомами на единице пути, если в результате такого столкновения g-квант выбывает из пучка. Отсюда величину 1/ m можно истолковать как среднюю длину свободного пробега g-кванта в веществе: Rγ = 1/ μ.

Ослабление пучка в слое вещества вследствие каждого из трех процессов, рассматривавшихся выше, происходит, очевидно, независимо. Следовательно, полный коэффициент ослабления равен

, (21.10)

где t и χ – коэффициенты поглощения, отвечающие фотоэффекту и образованию пар, ξ – коэффициент ослабления при эффекте Комптона, n 0 – число атомов в единице объема вещества. Линейный коэффициент ослабления за счет комптоновского рассеяния выражается также формулой

,

где NA – число Авогадро; r – плотность поглотителя; А – его атомная масса.

Ввиду того, что Z/A мало изменяется при переходе от вещества к веществу (от 0,5 до 0,4 в пределах периодической таблицы), линейный коэффициент ослабления за счет комптоновского рассеяния зависит практически только от плотности вещества. Если поглотитель состоит из элементов с малыми Z, ослабление пучка g-квантов определяется, в основном, эффектом Комптона (при средних значениях Еg). В этом случае, ввиду того, что ξ пропорционален плотности r, а отношение Z/A приблизительно постоянно, можно ввести массовый коэффициент ослабления

(21.11)

– универсальную величину, зависящую только от энергии g-кванта и поэтому пригодную для любого поглотителя.

Пусть имеется источник монохроматических g-квантов и их поглотитель (рис. 21.3). Используя детектор γ-излучения малых размеров и выбрав большое расстояние между источником и детектором, выделим узкий, почти параллельный пучок γ-квантов. Выберем диаметр поглотителя, равный диаметру пучка d. Можно сделать так, чтобы величина d была много меньше длины свободного пробега g-квантов в поглотителе по отношению к комптоновскому рассеянию. Тогда однажды рассеянный квант не возвратится в пучок и не попадет в детектор. Следовательно, коэффициент ослабления не будет зависеть от толщины поглотителя, и можно проинтегрировать (21.9) по x:

. (21.12)

Выражение (21.12) называется экспоненциальным законом поглощения γ-квантов. Оно справедливо в условиях т.н. хорошей геометрии опыта, когда исследуется прохождение узкого параллельного пучка γ-лучей: в этом случае не только фотоэффект и образование пар, но и комптоновское рассеяние выводит γ-кванты из пучка.

Если спектр γ-излучения содержит несколько линий, то

N = N 1 + N 2 + ···,

и уравнение (21.9) должно быть заменено системой уравнений. Так как каждая компонента g-излучения поглощается независимо, то для каждой из них справедлива формула (21.12). Отсюда интенсивность пучка после прохождения поглотителя, имеющего толщину x, будет равна

. (21.13)

В случае плохой геометрии (широкий пучок или пучок, имеющий большой угол раствора) рассеянные γ-кванты, остаются в пучке, и закон поглощения, строго говоря, уже нельзя выразить уравнением (21.9), так как в пучке будут встречаться многократно рассеянные g-кванты, имеющие меньшую энергию, чем падающие, и, соответственно, характеризуемые другим значением m. Уравнение (21.12) работает, однако, и в этом случае лучше, чем можно было ожидать. Причина хорошего согласия заключается в том, что γ-кванты с энергией 1-2 МэВ, потерявшие энергию из-за комптоновского рассеяния, быстро выбывают из пучка из-за резкого увеличения сечения фотоэффекта. Поэтому при использовании не слишком широких пучков удается ввести некоторое среднее или эффективное значение μ. Однако оно отличается от теоретического и зависит от геометрии опыта. Строгое вычисление ослабления интенсивности широкого пучка g-лучей при прохождении больших блоков вещества представляет собой достаточно сложную математическую задачу.

Ослабление широкого или расходящегося пучка монохроматических γ-квантов часто представляют в виде

, (21.14)

где величина B (Еg, Z, μx) называется фактором накопления. Фактор накопления показывает, во сколько раз увеличивается интенсивность широкого пучка за слоем поглотителя в сравнении с интенсивностью узкого пучка в той же точке. Значения B (Еg, Z, μx) табулированы для различных вариантов геометрии источника и поглотителя.

Лекция 22. Детекторы заряженных частиц и γ-квантов

 

22.1. Основные характеристики детекторов. Детекторами называются приборы, служащие для регистрации частиц. Они делятся на счетчики и трековые детекторы. Счетчики, или электронные детекторы, вырабатывают электрический импульс, когда в него попадает регистрируемая частица. Трековые детекторы позволяют зарегистрировать не только факт и момент попадания частицы, но и зафиксировать след (трек) частицы, воспроизводящий ее траекторию. Наибольшее распространение для детектирования ядерных излучений получили приборы, в которых используются ионизационный эффект или образование центров свечения. Применяются также методы, основанные на регистрации черенковского свечения, химических и структурных изменений в веществе, фазовых переходов и т.д.

Чтобы рассмотреть основные характеристики детекторов излучения, нет необходимости знать, какие процессы происходят в них. Для этого детектор достаточно рассматривать как устройство, на вход которого поступают частицы, а на выходе появляются сигналы (импульсы тока, вспышки света, пузырьки пара и т.п.). При этом методы регистрации и измерения сигналов также могут быть самыми разнообразными.

Важнейшей характеристикой детектора является его эффективность, определяемая как отношение числа зарегистрированных частиц к числу частиц, попавших в детектор. Для заряженных частиц эффективность регистрации большинства детекторов близка к единице. Для γ-квантов и нейтронов, регистрируемых по вторичным заряженным частицам, эффективность определяется вероятностью образования таких частиц. При выборе детектора для регистрации частиц определенного вида всегда необходимо учитывать возможность появления сигналов от частиц другой природы (например, при регистрации α-частиц – образование сигналов от β-частиц и γ-квантов). Для правильного учета этих факторов уже необходимо знать физические основы образования сигнала. Следует принимать во внимание и конструктивные особенности детекторов. Так, при регистрации α- или мягкого β-излучения следует считаться с поглощением их воздухом и оболочкой детектора.

Другой важной характеристикой детектора является разрешающее время – минимальный промежуток временимежду последовательным попаданием в детектор двух частиц, когда их сигналы еще не накладываются друг на друга. Если разрешающее время сравнимо со средним временем между попаданием частиц, значительная их часть не будет подсчитана. Мерой инерционности детектора является т.н. мертвое время – время, за которое детектор, зарегистрировавший одну частицу, успевает вернуться в исходное состояние, чтобы быть готовым к регистрации следующей. Частицы, прошедшие через детектор в период мертвого времени, не регистрируются.

Пространственным разрешением детектора называется погрешность, с которой детектор может фиксировать положение частицы в пространстве. Сравнительные характеристики наиболее распространенных детекторов приведены в табл. 22.1.

Таблица 22.1.

Основные характеристики детекторов

Детектор Пространственное разрешение, см Разрешающее время, с Мертвое время, с
Ионизационная камера ~1 106 10–4
Пропорциональный счетчик ~1 107 10–5
Счетчик Гейгера-Мюллера ~1 > 106 10–4
Сцинтилляционный счетчик ~1 108 108
Полупроводниковый детектор < 1 108 108
Черенковский счетчик > 1 109 109
Ядерная фотоэмульсия 10–4 - -
Камера Вильсона 10–2 10–1  
Пузырьковая камера 10–2 10–3  
Искровая камера 2·10–2 10–6 10–2

 

Электронный детектор вместе с приборами, обеспечивающими его работу (усиление сигналов, счет импульсов и т.д.), составляют счетную установку. Эффективность счетной установки не всегда равна эффективности детектора, хотя при правильной работе число импульсов, зарегистрированных установкой, должно быть пропорционально числу импульсов, образовавшихся в детекторе. Кроме импульсов от регистрируемых установкой частиц в ней возникают и посторонние импульсы, образовавшиеся в детекторе или в электронной аппаратуре (фон установки). Очевидно, что количество фоновых импульсов необходимо свести к минимуму, выбирая наиболее подходящий детектор, аппаратуру и условия измерения.

Простейшими задачами, решаемыми с помощью электронных детекторов, являются определение активности или плотности потока излучения. Такие задачи называются радиометрическими. Более сложны спектрометрические задачи, когда изучается распределение испускаемых частиц по энергиям.

Трековые детекторы не только регистрируют акт прохождения заряженной частицы, но и позволяют определять некоторые ее характеристики по плотности ионизации, по величине пробега, по числу δ-электронов. Возможности трековых детекторов увеличиваются, если их помещают в магнитное поле. В этих случаях измерение радиуса кривизны трека дает дополнительную информацию о заряде, импульсе, массе заряженной частицы.

22.2. Газовые ионизационные детекторы. Наиболее обширную группу электронных детекторов представляют ионизационные детекторы, действие которых основано на ионизации атомов и молекул, производимой первичными или вторичными заряженными частицами. Старейшими детекторами этой группы являются газовые детекторы. Газовый ионизационный детектор (рис. 22.1) представляет собой электрический конденсатор, заполненный газом, между электродами которого приложена разность потенциалов. В зависимости от характера процессов, протекающих в газе при попадании в него заряженной частицы (ПРИЛОЖЕНИЕ М), газовые детекторы делятся на ионизационные камеры, пропорциональные счетчики и счетчики Гейгера-Мюллера.

Принцип работы ионизационной камеры достаточно прост: заряженная частица ионизирует заполняющий камеру газ. Образовавшиеся электроны и положительные (и отрицательные) ионы устремляются к электродам, создавая электрический ток, по которому производится регистрация. Напряжение в камере подбирается так, чтобы все образовавшиеся заряженные частицы достигали электродов, не успев рекомбинировать, но при этом не разгонялись бы настолько сильно, чтобы производить ударную ионизацию. Поэтому в камере измеряется полная ионизация, произведенная частицей (т.е. полная энергия частицы), если ее пробег целиком умещается в камере. Необходимо обратить внимание на величину собираемого электродом заряда при попадании в камеру различных частиц. Так, α-частица с энергией 5 МэВ имеет пробег в газе несколько сантиметров и образует при этом примерно 1,5·105 пар ионов. β-частицы с энергией порядка 1 МэВ пролетают в газе несколько метров, а в камере размером ~10 см создают несколько тысяч пар ионов. Это означает, что в ионизационной камере амплитуда импульса от α-частицы на два порядка больше амплитуды импульса от β-частицы. Поэтому ионизационные камеры применяют для регистрации тяжелых нерелятивистских частиц: треки электронов и релятивистских частиц не умещаются в камере целиком.

Ионизационные камеры бывают двух типов: непрерывного действия (иначе – интегрирующие) и импульсные. В камерах непрерывного действия измеряется суммарный ионизационный ток (токовые камеры) или падение напряжения (камеры конденсаторного типа), т.е. величины, пропорциональные потоку энергии проходящих заряженных частиц. В связи с этим они находят применение в дозиметрии ядерных излучений (см. Лекцию 24). Импульсные камеры фиксируют прохождение одиночных частиц. При этом измеряется и энергия заряженной частицы, но с довольно низкой точностью, что обусловлено малостью выходного импульса: необходимо использовать линейный усилитель сигнала с большим коэффициентом усиления.

Последний недостаток ионизационной камеры в значительной мере устранен в пропорциональном счетчике. Этот детектор можно рассматривать как импульсную ионизационную камеру, чувствительность которой в М раз больше (где М >> 1 – коэффициент газового усиления). Значение М в пропорциональных счетчиках 103-106, амплитуда импульса – до 10 мВ. При газовом усилении импульсов сохраняется зависимость их амплитуды от энергии частицы, так как M практически не зависит от первичной ионизации.

Благодаря газовому усилению при помощи пропорциональных счетчиков можно детектировать частицы, пользуясь электронной аппаратурой с меньшим усилением, чем в случае ионизационных камер, и, следовательно, более простой. Кроме того, при помощи пропорциональных счетчиков можно регистрировать частицы меньших энергий, чем в случае ионизационной камеры: при работе с камерами уровень шумов усилителя ограничивает минимальную величину импульса, который еще регистрируется.

Зависимость величины импульсов от начальной ионизации позволяет дискриминировать излучения. Например, α-частицы можно детектировать в присутствии β-частиц: импульсы β-частиц имеют много меньшую амплитуду, и их легко можно отсортировать счетной системой.

Пропорциональные счетчики широко применяются в радиометрии. Так, для измерения абсолютной активности получили распространение проточные 2p-счетчики и 4p-счетчики, в которых препарат размещается внутри счетчика. При такой геометрии регистрируются либо все вылетающие частицы (телесный угол 4p), либо половина (2p). Применение пропорциональных счетчиков в спектрометрии ограничено тем, что треки длиннопробежных частиц не умещаются в счетчике.

Счетчики Гейгера-Мюллера долго оставались самыми распространенными детекторами ядерных излучений. Причины такой популярности – высокая эффективность регистрации электронов (по сравнению с другими видами излучений), возможность применения сравнительно простой электронной аппаратуры (из-за значительной амплитуды импульсов, достигающей 10 В, эти счетчики не требуют применения усилителей) и низкая требовательность к стабилизации напряжения. Недостатки счетчиков Гейгера-Мюллера – это невозможность измерить энергию частицы и невысокое временное разрешение.

По конструкции счетчики Гейгера-Мюллера можно разделить на два основных типа: цилиндрические и торцевые. Торцевые счетчики имеют в торце окошко, закрытое тонким слоем слюды толщиной 1-5 мг/см2. Их можно использовать для регистрации электронов (в том числе и низкоэнергетических) и даже α-частиц. Эффективность цилиндрических счетчиков к β-частицам определяется их поглощением в стенке счетчика. Вследствие вторичных эффектов, связанных с повторным разрядом, эффективность детектора к заряженным частицам может быть выше единицы.

Цилиндрические счетчики предназначены для регистрации излучения, проникающего в чувствительный объем через цилиндрическую поверхность. При этом фотоны регистрируются только в том случае, если они создают вторичные электроны. Для фотонов высокой энергии их поглощение в газе пренебрежимо мало. Чтобы процесс регистрации фотонного излучения происходил с заметной эффективностью, необходимо его взаимодействие со стенками детектора. Эффективность регистрации фотонов можно определить как число вторичных электронов, попадающих в чувствительный объем счетчика, приходящихся на один фотон, падающий на счетчик. Она зависит не только от того, какая доля фотонов поглощается в стенках, но и от того, достигают ли вторичные электроны, возникающие при поглощении фотонов, чувствительного объема счетчика. Очевидно, что попасть в чувствительный объем и вызвать разряд могут лишь те вторичные электроны, которые образуются в стенках счетчика на расстояниях от внутренней поверхности, не превышающих длину пробега этих электронов в материале стенки.

В промежуточной области энергий фотонов, где основную роль в создании вторичных электронов играет эффект Комптона, материал стенок мало влияет на величину эффективности регистрации.[180] Мало влияет на эффективность и толщина стенки: в тонкой стенке образуется мало вторичных электронов, в толстой большая их часть поглощается самой стенкой. Таким образом, для каждого материала существует оптимальная толщина стенки, при которой эффективность счета фотонов данной энергии наибольшая.

22.3. Полупроводниковые детекторы. В последние десятилетия для регистрации ионизирующих излучений наибольшее распространение получили полупроводниковые детекторы (ППД) – германиевые, кремниевые и т.д. Принцип их действия подобен принципу действия ионизационной камеры. В среде с низкой проводимостью (ПРИЛОЖЕНИЕ Н) создается электрическое поле. При проникновении в эту среду ионизирующих частиц происходит образование носителей заряда (электронов проводимости и дырок). Заряды разделяются электрическим полем и собираются на электродах, формируя электрический импульс, который можно усилить и измерить.

В среднем на образование одной электронно-дырочной пары независимо от вида излучения расходуется 3,75 эВ в кремнии и около 3 эВ в германии, т.е. средняя энергия ионизации W на порядок меньше, чем в воздухе. Поэтому возникающий при собирании заряда электрический импульс будет соответственно на порядок выше, что облегчает регистрацию частиц. При этом следует учесть, что плотность вещества полупроводникового детектора примерно на три порядка выше плотности газа в обычном газоразрядном счетчике. Поэтому поглощенная энергия (в расчете на одинаковую плотность потока излучения) в ППД на несколько порядков выше, чем в газовом. Если пробег быстрой заряженной частицы в рабочей области детектора меньше ее толщины, то количество образующихся электронно-дырочных пар пропорционально энергии этой частицы. Это способствует широкому использованию ППД в спектрометрии. Малые размеры рабочей области и высокая подвижность электронов и дырок определяют малое время собирания зарядов на электродах и, как следствие, малое разрешающее время (~ 10–8 с). В области относительно невысоких энергий ионизирующего излучения (электроны до 2 МэВ, протоны до 20 МэВ и т.п.) ППД обладают практически стопроцентной эффективностью к заряженным частицам и превосходят счетчики других типов по компактности и точности измерения энергии.




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 988; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.049 сек.