Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механизм проведения возбуждения по нервному волокну. 3 страница




Мост имеет тесные функциональные связи со средним мозгом. Эти отделы ствола мозга также осуществляют проводниковую и рефлекторную функции. Проводниковая обеспечивается восходящими и нисходящими путями, идущими через них. Рефлекторная их нервными центрами. Нейроны моста формируют его ретикулярную формацию, ядра лицевого, отводящего нервов, двигательную часть ядер тройничного нерва и его чувствительное ядро.

Ретикулярная формация является частью всей ретикулярной формации ствола. В ней расположены ядра пневмотаксического центра. Он координирует активность центров вдоха и выдоха продолговатого мозга.

В среднем мозге находятся ядра четверохолмия, красное ядро, черная субстанция, ядра глазодвигательного и блокового нервов, ретикулярная формация. Красное ядро расположены в верхней части ножки мозга. К нему идут нервные пути от коры полушарий, подкорковых ядер, мозжечка. От него идет руброспинальный тракт к мотонейронам сгибателей спинного и ретикулярной формации продолговатого мозга.

В связи с различным функциональным значением ядра Дейтерса и красного ядра, при перерезке ствола между средним и продолговатым мозгом у животных возникает децеребрационная ригидность. Это резкое повышение тонуса всех мышц разгибателей. Голова животного запрокидывается, спина выгибается, конечности вытягиваются. Механизм Д.Р. заключается в том, что красное ядро, активируя мотонейроны сгибателей, через вставочные тормозные нейроны тормозит мотонейроны разгибателей. Одновременно исключается тормозящее влияние красного ядра на ретикулярную формацию продолговатого мозга, возле ядра Дейтерса. В отсутствии влияния красного ядра преобладает возбуждающее действие ядра Дейтерса на мотонейроны разгибателей.

У мезенцефальных животных, у которых ствол перерезан выше среднего мозга, двигательные рефлексы значительно разнообразнее, чем у бульбарных. Они способны выполнять выпрямительные рефлексы. Эти рефлексы обеспечивают восстановление естественной позы. Например, если мезенцефальное животное положить на бок, то оно сначала поднимет голову, а затем перевернется на живот. Позные рефлексы продолговатого и выпрямительные среднего мозга, обеспечивают непроизвольное поддержание позы и равновесия тела при неподвижном положении, например стоянии, сидении. Поэтому они относятся к статическим.

40. Физиология среднего мозга, его рефлекторная деятельность и участие в процессах саморегуляции функций.

Средний мозг осуществляет и стато-кинетические рефлексы. Это рефлексы, которые служат для сохранения устойчивого положения тела при движении. К ним относятся нистагм головы и глаз, лифтная реакция, рефлекс готовности к прыжку. Нистагм головы и глаз это их медленное бессознательное движение в сторону противоположную вращению, а затем быстрое возвращение в исходную позицию. Нистагм глаз сохраняется некоторое время и после вращения. Лифтная реакция - это уменьшение тонуса разгибателей конечностей в начале быстрого подъема, которое сменяется его повышением. При быстром опускании, тонус разгибателей меняется противоположным образом. Рефлекс готовности к прыжку проявляется увеличением тонуса разгибателей передних конечностей при опускании животного вниз головой В результате они вытягиваются. Стато-кинетические рефлексы, как и выпрямительные, обусловлены возбуждением рецепторов вестибулярного аппарата

Ядра глазодвигательного и блокового нервов обеспечивают содружественные движения глаз. Кроме того первое регулирует ширину зрачка и кривизну хрусталика.

Черная субстанция имеет двусторнние связи с подкорковыми ядрами и участвует в координации точных движений пальцев рук, регуляции жевания и глотания. Она может оказывать тормозное влияние на красное ядро.

Верхние бугры четверохолмия являются первичными зрительными центрами. К ним подходят пути от нейронов сетчатки глаза. От них сигналы идут к таламусу, а по нисходящему тектоспинальному пути к мотонейронам спинного мозга. Здесь происходит первичный анализ зрительной информации. Например, определение положения источника света, направление его движения. В них также формируются зрительные ориентировочные рефлексы. Т.е. поворот головы в сторону источника света. Нижние бугры четверохолмия являются первичными слуховыми центрами К ним идут сигналы от фонорецепторов уха, а от них к таламусу. От них к мотонейронам также идут пути в составе тектоспинального тракта. В этих буграх осуществляется первичный анализ слуховых сигналов, а за счет связей с мотонейронами формируются ориентировочные рефлексы на звуковые раздражители.

41. Децеребрационная ригидность и механизм ее возникновения. Роль среднего и продолговатого мозга в регуляции мышечного тонуса. Статические и статокинетические рефлексы.

В связи с различным функциональным значением ядра Дейтерса и красного ядра, при перерезке ствола между средним и продолговатым мозгом у животных возникает децеребрационная ригидность. Это резкое повышение тонуса всех мышц разгибателей Голова животного запрокидывается, спина выгибается, конечности вытягиваются. Механизм ДР. заключается в том. что красное ядро, активируя мотонейроны сгибателей, через вставочные тормозные нейроны тормозит мотонейроны разгибателей. Одновременно исключается тормозящее влияние красного ядра на ретикулярную формацию продолговатого мозга, возле ядра Дейтерса. В отсутствии влияния красного ядра преобладает возбуждающее действие ядра Дейтерса на мотонейроны разгибателей.

У мезенцефальных животных, у которых ствол перерезан выше среднего мозга, двигательные рефлексы значительно разнообразнее, чем у бульварных. Они способны выполнять выпрямительные рефлексы Эти рефлексы обеспечивают восстановление естественной позы. Например, если мезенцефальное животное положить на бок. то оно сначала поднимет голову, а затем перевернется на живот. Позные рефлексы продолговатого и выпрямительные среднего мозга, обеспечивают непроизвольное поддержание позы и равновесия тела при неподвижном положении, например стоянии, сидении. Поэтому они относятся к статическим

Средний мозг осуществляет и стато-кинетические рефлексы Это рефлексы, которые служат для сохранения устойчивого положения тела при движении. К ним относятся нистагм головы и глаз, лифтная реакция, рефлекс готовности к прыжку. Нистагм головы и глаз это их медленное бессознательное движение в сторону противоположную вращению, а затем быстрое возвращение в исходную позицию. Нистагм глаз сохраняется некоторое время и после вращения. Лифтная реакция - это уменьшение тонуса разгибателей конечностей в начале быстрого подъема, которое сменяется его повышением. При быстром опускании, тонус разгибателей меняется противоположным образом. Рефлекс готовности к прыжку проявляется увеличением тонуса разгибателей передних конечностей при опускании животного вниз головой. В результате они вытягиваются. Стато-кинетические рефлексы, как и выпрямительные, обусловлены возбуждением рецепторов вестибулярного аппарата

 

2. Три составные части учения о ВНД.

Представление о типологических особенностях нервной системы человека и животных является одним из определяющих в павловском учении о высшей нервной деятельности.

Соотношение силы, уравновешенности и подвижности основных нервных процессов определяет типологию высшей нервной деятельности индивида.

Систематизация типов высшей нервной деятельности основана на оценке этих трех основных особенностей процессов возбуждения и торможения:

Силы. Под силой понимается работоспособность клеток коры больших полушарий. При оценке силы раздражительного процесса (возбудимости) применяют такие мероприятия, которые направлены на повышение возбудимости клеток коры головного мозга. При этом оценивается, какую степень возбудимости может выдержать нервная система, не впадая в запредельное торможение;

Уравновешенности. Уравновешенность нервных процессов - свойство нервной системы, выражающее соотношение между возбуждением и торможением и определяющее сбалансированность процессов возбуждения и торможения. Для определения уравновешенности нервных процессов сравниваются силы процессов возбуждения и торможения;

Подвижности. Подвижность процессов возбуждения и торможения выражается в том, как быстро в клетках коры мозга процесс возбуждения сменяется процессом торможения и наоборот. Подвижность нервных процессов можно определить быстрой заменой дифференцировочного (тормозного) раздражителя.

Типы ВНД выступают как результат унаследованных и приобретенных индивидуальных качеств нервной системы. Тип проявляется в особенностях функционирования физиологических систем организма и прежде всего самой нервной системы, ее высших «этажей», обеспечивающих высшую нервную деятельность.

Типы ВНД формируются на основе, как генотипа, так и фенотипа. Генотип формируется в процессе эволюции под влиянием естественного отбора, обеспечивая развитие наиболее приспособленных к окружающей среде индивидов. Под влиянием реально действующих на протяжении индивидуальной жизни условий внешней среды генотип формирует фенотип организма

Второй вариант:

И.П.Павлов в своей работе «Ответ физиолога психологам» сформулировал черты полной рефлекторной теории. Из комплекса принципов, на которых создана теория высшей нервной деятельности, он выделяет три основополагающих принципа: принцип детерминизма, принцип структурности и принцип анализа и синтеза.

Принцип детерминизма гласит; «Нет действия без причины». Всякая деятельность организма вызвана определенной причиной, воздействием из внешнего мира или внутренней среды организма. Целесообразность реакции определяется специфичностью раздражителя, чувствительностью организма к раздражителям. Результатом рефлекторной деятельности, ее естественным завершением является подчинение внешних условий потребностяморганизма. Рефлекторный акт — это, прежде всего практическое взаимодействие между организмом и средой. Всякая деятельность организма, какой бы сложной она ни казалась, всегда есть причинно обусловленный, закономерный ответ на конкретные внешние воздействия.

Принцип структурности — в мозге нет процессов, которые не имели бы материальной основы, каждый физиологический акт нервной деятельности приурочен к структуре. В филогенезе внешние раздражения, многократно повторяясь однотипным системным образом, задействуют в организме определенную морфофизиологическую структуру, которая за тем передается из поколения в поколение. Она соответствует более или менее постоянным отношениям окружающей действительности.

Окружающая действительность вечно изменяется и преобразуется, вследствие этого раздражители никогда не бывают тождественными, соответственно изменяется и преобразуется морфофизиологическая структура нервной деятельности. Ту часть структуры, которая находится в постоянном динамическом преобразовании, Павлов назвал «динамической, функциональной структурой». Применительно к нервным структурам первая (то есть врожденная) — это структура постоянных нервных связей (субстрат безусловных рефлексов). Вторая (динамическая, приобретаемая в индивидуальном развитии) — это структура временных связей (субстрат условных рефлексов).

Принцип анализа и синтеза раздражителей. В мозге непрерывно происходит процесс анализа и синтеза, как поступающей информации, так и ответных реакций. В результате организм извлекает из среды полезную информацию, перерабатывает, фиксирует ее впамяти и формирует ответные действия в соответствии с обстоятельствами и потребностями.

 

3. Принцип рефлекторной деятельности и его место в учении о ВНД.

 

 

1. Классификация форм рефлекторной деятельности в современной науке.

Рефлекторная деятельность - это сложная анализирующая и синтезирующая работа коры головного мозга, суть которой состоит в дифференциации многочисленных раздражителей и установлении между ними самых различных связей.

5. Методы изучения ВНД

В 1964 году Р.У.Эшби сформулировал положение о том, что сложность объекта исследования предопределяет сложность методов его исследования. Это положение получило название принципа адекватности. Согласно ему, неправомерно изучать сложный объект, каковым является нейрофизиологический механизм психической деятельности, элементарными методами. Поэтому, все ниже перечисленные методы не используются поодиночке. Как правило, для исследования применяется группа методов.

1. Метод условных рефлексов. Этот метод, в сочетании с различными дополнительными исследованиями, является важнейшим методом изучения высшей нервной деятельности. Условный рефлекс – это выработанная в онтогенезе реакция организма на раздражитель, ранее индифферентный для этой реакции. Основными правилами выработки условных рефлексов являются:

а) неоднократное сочетание безразличного раздражителя с безусловным;

б) условный стимул должен предшествовать безусловному.

Образованию условного рефлекса способствуют такие факторы, как:

а) оптимальное соотношение силы условного и безразличного раздражителей;

б) отсутствие посторонних раздражителей и

в) функциональное состояние коры и нервных центров.

2. Электроэнцефалография. Электроэнцефалография относится к наиболее распространенным электрофизиологическим методам исследования ЦНС. Суть ее заключается в регистрации ритмических изменений потенциалов определенных областей коры большого мозга между двумя активными электродами (биполярный способ) или активным электродом в определенной зоне коры и пассивным, наложенным на удаленную от мозга область.

Электроэнцефалограмма – это кривая регистрации суммарного потенциала постоянно меняющейся биоэлектрической активности значительной группы нервных клеток. В эту сумму входят синаптические потенциалы и отчасти потенциалы действия нейронов и нервных волокон. Суммарную биоэлектрическую активность регистрируют в диапазоне от 1 до 50 Гц с электродов, расположенных на коже головы. Та же активность от электродов на поверхности коры мозга называется электрокортикограммой. При анализе ЭЭГ учитывают частоту, амплитуду, форму отдельных волн и повторяемость определенных групп волн.

Амплитуда измеряется как расстояние от базовой линии до пика волны. На практике, ввиду трудности определения базовой линии, используют измерение амплитуды от пика до пика. Под частотой понимается число полных циклов, совершаемых волной за 1 секунду. Этот показатель измеряется в герцах. Величина обратная частоте, называется периодом волны. На ЭЭГ регистрируется 4 основных физиологических ритма: ά -, β -, θ -. и δ – ритмы.

Ά – ритм имеет частоту 8-12 Гц, амплитуду от 50 до 70 мкВ. Он преобладает у 85-95% здоровых людей старше девятилетнего возраста (кроме слепорожденных) в состоянии спокойного бодрствования с закрытыми глазами и наблюдается преимущественно в затылочных и теменных областях. Если он доминирует, то ЭЭГ рассматривается как синхронизированная. Реакцией синхронизации называется увеличение амплитуды и снижение частоты ЭЭГ. Механизм синхронизации ЭЭГ связан с деятельностью выходных ядер таламуса. Вариантом ά- ритма являются «веретена сна» длительностью 2-8 секунд, которые наблюдаются при засыпании и представляют собой регулярные чередования нарастания и снижения амплитуды волн в частотах ά - ритма. Ритмами той же частоты являются:

μ – ритм, регистрируемый в роландовой борозде, имеющий аркообразную или гребневидную форму волны с частотой 7-11 Гц и амплитудой меньше 50 мкВ;

κ - ритм, отмечаемый при наложении электродов в височном отведении, имеющий частоту 8-12 Гц и амплитуду около 45 мкВ.

β - ритм имеет частоту от 14 до 30 Гц и низкую амплитуду – от 25 до 30 мкВ. Он сменяет ά - ритм при сенсорной стимуляции и при эмоциональном возбуждении. β– ритм наиболее выражен в прецентральных и фронтальных областях и отражает высокий уровень функциональной активности головного мозга. Смена ά - ритма (медленной активности) β – ритмом (быстрой низкоамплитудной активностью) называется десинхронизацией ЭЭГ и объясняется активирующим влиянием на кору больших полушарий ретикулярной формации ствола и лимбической системы.

θ – ритм имеет частоту от 3,5 до 7,5 Гц, амплитуду до от 5 до 200 мкВ. У бодрствующего человека θ – ритм регистрируется обычно в передних областях мозга при длительном эмоциональном напряжении и почти всегда регистрируется в процессе развития фаз медленноволнового сна. Отчетливо регистрируется у детей, пребывающих в состоянии неудовольствия. Происхождение θ - ритма связывают с активностью мостовой синхронизирующей системы.

δ – ритм имеет частоту 0,5-3,5 Гц, амплитуду от 20 до 300 мкВ. Эпизодически регистрируется во всех областях головного мозга. Появление этого ритма у бодрствующего человека свидетельствует о снижении функциональной активности мозга. Стабильно фиксируется во время глубокого медленноволнового сна. Происхождение δ – ритма ЭЭГ связывают с активностью бульбарной синхронизирующей системы.

γ – волны имеют частоту более 30 Гц и амплитуду около 2 мкВ. Локализуются в прецентральных, фронтальных, височных, теменных областях мозга. При визуальном анализе ЭЭГ обычно определяют два показателя – длительность ά – ритма и блокада ά – ритма, которая фиксируется при предъявлении испытуемому того или иного раздражителя. Кроме этого на ЭЭГ есть особые волны, отличающиеся от фоновых. К ним относят: К-комплекс, λ – волны, μ – ритм, спайк, острая волна.

К - комплекс – это сочетание медленной волны с острой волной, вслед за которыми идут волны частотой около 14 Гц. К-комплекс возникает во время сна или спонтанно у бодрствующего человека. Максимальная амплитуда отмечается в вертексе и обычно не превышает 200 мкВ.

Λ – волны - монофазные положительные острые волны, возникающие в окципитальной области, связанные с движением глаз. Их амплитуда меньше 50 мкВ, частота – 12-14 Гц.

Μ – ритм – группа аркообразных и гребневидных волн частотой 7-11 Гц и амплитудой меньше 50 мкВ. Регистрируются в центральных областях коры (роландова борозда) и блокируется тактильной стимуляцией или двигательной активностью.

Спайк – волна, четко отличающаяся от фоновой активности, с выраженным пиком длительностью от 20 до 70 мс. Первичный компонент ее обычно является негативным. Спайк-медленная волна – последовательность поверхностно негативных медленных волн с частотой 2,5-3,5 Гц, каждая из которых ассоциируется со спайком.

► Острая волна – волна, отличающаяся от фоновой активности с подчеркнутым пиком длительностью 70-200 мс. При малейшем привлечении внимания к стимулу развивается десинхронизация ЭЭГ – реакция блокады ά – ритма. Хорошо выраженный ά - ритм – показатель покоя организма. Более сильная реакция активации выражается не только в блокаде ά – ритма, но и в усилении высокочастотных составляющих ЭЭГ: β – и γ – активности. Падение уровня функционального состояния выражается в уменьшении доли высокочастотных составляющих и росте амплитуды у более медленных ритмов – θ- и δ- колебаний.

3. Метод регистрации импульсной активности нервных клеток. Импульсная активность отдельных нейронов или группы нейронов может оцениваться лишь у животных и в отдельных случаях у людей во время оперативного вмешательства на мозге. Для регистрации нейронной импульсной активности головного мозга человека используются микроэлектроды с диаметром кончиков 0,5-10 мкм. Они могут быть выполнены из нержавеющей стали, вольфрама, платиноиридиевых сплавов или золота. Электроды вводятся в мозг с помощью специальных микроманипуляторов, позволяющих точно подводить электрод к нужному месту. Электрическая активность отдельного нейрона имеет определенный ритм, который закономерно изменяется при различных функциональных состояниях. Электрическая активность группы нейронов обладает сложной структурой и на нейрограмме выглядит как суммарная активность многих нейронов, возбуждающихся в разное время, различающихся по амплитуде, частоте и фазе. Полученные данные обрабатываются автоматически по специальным программам.

4. Метод вызванных потенциалов. Специфическая активность, связанная со стимулом, называется вызванным потенциалом. У человека – это регистрация колебания электрической активности, возникающего на ЭЭГ при однократном раздражении периферических рецепторов (зрительных, слуховых, тактильных). У животных раздражают также афферентные пути и центры переключения афферентной импульсации. Амплитуда их обычно невелика, поэтому для эффективного выделения вызванных потенциалов применяют прием компьютерного суммирования и усреднения участков ЭЭГ, которое записалось при повторном предъявлении стимула. Вызванный потенциал состоит из последовательности отрицательных и положительных отклонений от основной линии и длится около 300 мс после окончания действия стимула. У вызванного потенциала определяют амплитуду и латентный период. Часть компонентов вызванного потенциала, которые отражают поступление в кору афферентных возбуждений через специфические ядра таламуса, и имеют короткий латентный период, называются первичным ответом. Они регистрируются в корковых проекционных зонах тех или иных периферических рецепторных зон. Более поздние компоненты, которые поступают в кору через ретикулярную формацию ствола, неспецифические ядра таламуса и лимбической системы и имеют более длительный латентный период, называются вторичными ответами. Вторичные ответы, в отличие от первичных, регистрируются не только в первичных проекционных зонах, но и в других областях мозга, связанных между собой горизонтальными и вертикальными нервными путями. Один и тот же вызванный потенциал может быть обусловлен многими психологическими процессами, а одни и те же психические процессы могут быть связаны с разными вызванными потенциалами.

5. Томографические методы. Томография – основана на получении отображения срезов мозга с помощью специальных техник. Идея этого метода была предложена Дж.Родоном (1927), который показал, что структуру объекта можно восстановить по совокупности его проекций, а сам объект может быть описан множеством своих проекций.

Компьютерная томография – это современный метод, позволяющий визуализировать особенности строения мозга человека с помощью компьютера и рентгеновской установки. При компьютерной томографии через мозг пропускается тонкий пучок рентгеновских лучей, источник которого вращается вокруг головы в заданной плоскости; прошедшее через череп излучение измеряется сцинтилляционным счетчиком. Таким образом, получают рентгенографические изображения каждого участка мозга с различных точек. Затем с помощью компьютерной программы по этим данным рассчитывают радиационную плотность ткани в каждой точке исследуемой плоскости. В результате получают высококонтрастное изображение среза мозга в данной плоскости.

Позитронно-эмисионная томография – метод, который позволяет оценить метаболическую активность в различных участках мозга. Испытуемый глотает радиоактивное соединение, позволяющее проследить изменения кровотока в том или ином отделе мозга, что косвенно указывает на уровень метаболической активности в нем. Суть метода заключается в том, что каждый позитрон, испускаемый радиоактивным соединением, сталкивается с электроном; при этом обе частицы взаимоуничтожаются с испусканием двух γ-лучей под углом 180°. Эти улавливаются фотодетекторами, расположенными вокруг головы, причем их регистрация происходит лишь тогда, когда два детектора, расположенные друг против друга возбуждаются одновременно. На основании полученных данных строится изображение в соответствующей плоскости, которое отражает радиоактивности разных участков исследуемого объема ткани мозга.

Метод ядерно-магнитного резонанса (ЯМР-томография) позволяет визуализировать строение мозга без применения рентгеновских лучей и радиоактивных соединений. Вокруг головы испытуемого создается очень сильное магнитное поле, которое воздействует на ядра атомов водорода, имеющих внутреннее вращение. В обычных условиях оси вращения каждого ядра имеют случайное направление. В магнитном поле они меняют ориентацию в соответствии с силовыми линиями этого поля. Выключение поля ведет к тому, что атомы утрачивают единое направление осей вращения и вследствие этого излучают энергию. Эту энергию фиксирует датчик, а информация передается на компьютер. Цикл воздействия магнитного поля повторяется много раз и в результате на компьютере создается послойное изображение мозга испытуемого.

6. Реоэнцефалография. Реоэнцефалография представляет собой метод исследования кровообращения головного мозга человека, основанный на регистрации изменений сопротивления ткани мозга переменному току высокой частоты в зависимости от кровенаполнения и позволяет косвенно судить о величине общего кровенаполнения мозга, тонусе, эластичности его сосудов и состоянии венозного оттока.

7. Эхоэнцефалография. Метод основан на свойстве ультразвука, по-разному отражаться от структур мозга, цереброспинальной жидкости, костей черепа, патологических образований. Кроме определения размеров локализации тех или иных образований мозга этот метод позволяет оценить скорость и направление кровотока.

8. Электромиография. Электромиография – метод регистрации суммарных колебаний электрической активности, возникающей при сокращении мышц. Регистрация производится с поверхности кожи. Полученные сигналы сначала подвергаются выпрямлению, а затем интегрируются.

9. Кожно-гальваническая реакция. Электрическая активность кожи – кожно-гальваническая реакция (КГР) – определяется двумя способами. Первый представляет собой измерение кожного сопротивления, которое зависит от активности потовых желез и свойства самой кожи; второй – измерение разности потенциалов между двумя точками на поверхности кожи, не зависящей от этих характеристик. Динамические характеристики физической КГР отражают быстропротекающие процессы в ЦНС. В возникновении КГР участвуют два главных механизма: периферической (свойства кожи, в том числе активность потовых желез) и передаточный, связанный с активирующим и пусковым действием центральных структур. Наиболее эффективна КГР в сочетании с другими методами при оценке эмоционального состояния испытуемых.

10. Электроокулография. Это метод регистрации электрической активности, возникающей при движении глаз. Роговица глаза имеет положительный заряд относительно сетчатки, что создает постоянный потенциал, который называется корнеоретинальным потенциалом. При изменении положения глаза происходит переориентация этого потенциала, которая фиксируется прибором. Электроокулография наиболее эффективна в сочетании с другими методами. При оценке ЭЭГ, например, она позволяет вычленить артефакты, обусловленные движением глаз.

11. Метод перерезки и выключения. Метод перерезки и выключения различных участков ЦНС производится различными способами. Используя этот метод можно наблюдать за изменением условно-рефлекторного поведения.

12. Методы холодового выключения структур головного мозга дают возможность визуализировать пространственно-временную мозаику электрических процессов мозга при образовании условного рефлекса в разных функциональных состояниях.

13. Методы молекулярной биологии направлены на изучение роли молекул ДНК, РНК и других биологически активных веществ в образовании условного рефлекса.

14. Стереотаксический метод заключается в том, что животному вводят в подкорковые структуры электрод, с помощью которого можно раздражать, разрушать, или вводить химические вещества. Тем самым животное готовят для хронического эксперимента. После выздоровления животного применяют метод условных рефлексов.

15. Ассоциативный эксперимент. Суть эксперимента заключается в вызове у исследуемого ассоциаций на словесный или другой какой-то стимул. При этом в расчет принимается латентный период вербального ответа и его средняя вариация, тип и характер ассоциации в соответствии с той или иной классификацией, комплексные реакции, то есть вполне определенные реакции, вызванные аффектогенными раздражителями. Модификация по А.Р. Лурия: сопряженная моторная методика.

16. Психологические тесты.

6. Современные представления о замыкателыюй деятельности мозга.

Новыми изменчивыми формами реагирования, формирующимися в процессе жизнедеятельности организма, являются условные рефлексы. Условный рефлекс – прижизненно сформировавшаяся при определен ных условиях связь между условным раздражителем и определенным ответом на него. Образование условного рефлекса – это образование новой дуги, элементы которой соединяются (замыкаются) образованны ми связями. В результате возбуждение, вызванное новым и значимым раздражителем, начинает распространяться по новому «руслу» (нерв ному пути), не распространяясь в стороны и достигая нужного «эффек та».
Кора больших полушарий является центром аналитико-синтетической деятельности. Образование условных рефлексов, иначе говоря – замыкание временных связей, является основной работой коры больших полушарий. Поэтому деятельность коры головного мозга называют замыкательной деятельностью.

Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция — образование новых рефлексов и их систем




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 613; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.047 сек.